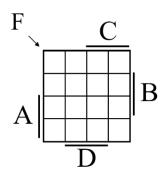
Name:		
manic.		

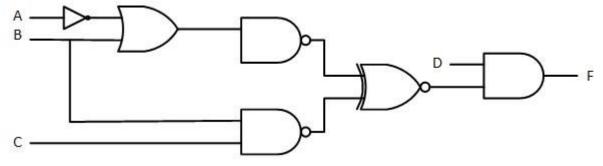
NEPTUN cod: _____


I+C Technology

First Exam, 1st Semester: 2016/2017

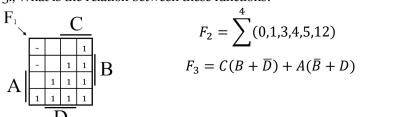
28.10.2016

1., Simplify the following Boolean expression using Boolean rules. Convert the simplified expression into the canonical form. ($A=2^3$, $B=2^2$, $C=2^1$, $D=2^0$)

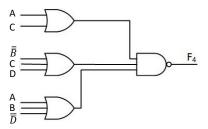

$$F = \overline{\overline{A + B\bar{C}} + D(\overline{A + \bar{B}})}$$

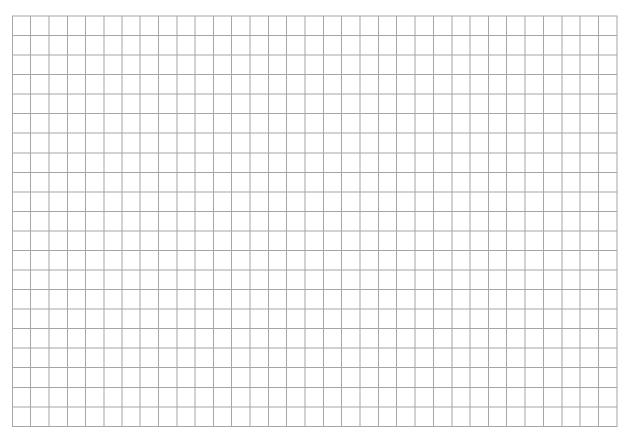
Solution $F = \sum_{i=1}^{4} (\underline{})$

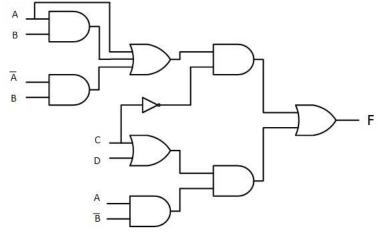
(6 pts)

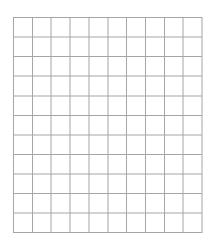

2., Given is a logic circuit below. Write a possible combination of input values, when the output F is 1 and input A is 0. Write a combination of input values if you can change only one input and the output F alters to 0.

Solution
$$F=1$$
 , if $A=0$, $B=_$, $C=_$, $D=_$ $F=0$, $_$ input change


(5 pts)


3., What is the relation between these functions?


$$F_2 = \sum_{1}^{4} (0,1,3,4,5,12)$$


$$F_3 = C(B + \overline{D}) + A(\overline{B} + D)$$

4., Write a Boolean expression for the following circuit (F), then simplify that expression as much as possible. Draw a logic gate circuit using only NAND gates with 2 inputs.

Solution

5., Construct a circuit that has 4 inputs (A,B,C,D) and 3 outputs. A four-bit binary number ($A=2^3$, $B=2^2$, $C=2^1$, $D=2^0$), appears on the input to a combinational logic circuit. Output F_1 indicates whether the number is divisible by 2 without any remainder (see row 4 e.g.), output F_2 indicates if the number is divisible by 5 without remainder (see row 5 e.g.) and output F_3 indicates if the number is divisible by 2 and 5 too. Obtain the algebra form for F_1 and F_2 . Draw a circuit diagram for the minimized the F_3 functions. (0 is divisible by any number)

	A	В	С	D	F_1	F_2	F_3							
0	0	0	0	0										
1	0	0	0	1										
2	0	0	1	0										
3	0	0	1	1										
4	0	1	0	0	1	0	0							
5	0	1	0	1	0	1	0							
	0	1	1	0										
	0	1	1	1										
	1	0	0	0										
	1	0	0	1										
	1	0	1	0										
	1	0	1	1										
	1	1	0	0										
	1	1	0	1										
	1	1	1	0										
	1	1	1	1										

	Solution	
$F_1 =$	$F_2 =$	
	F_3	
		(10 p

0-17: 1 18-22: 2 23-27: 3 28-32: 4 33-36:5