AUTOMOTJVE ENVIRONMENT SENSORS

Lecture 10
Radars

Dr. Szilárd Aradi

Radar History

- Radio Detection and Ranging
- Christian Hülsmeyer 1904 creates the Telemobiloscope
- Approx. 1 m wavelength
- Horn antenna with parabolic reflector
- Rang a Bell

- Could not directly measure distance.
- The first patented device using radio waves for detecting the presence of distant objects.
- Albert Wallace Hull around 1920 invented the magnetron .
- Leads to the generation of high power shortwave signals
- Spreads from the 40s, naturally WW II gave a large motivation

Automotive Radar History

- First tentative automotive radar since 70 's
- Too large, too expensive
- VDO, 10 GHz, early 1970's
- Standard Electric Lorenz, 16 GHz, 1975

- AEG-Telefunken, 35 GHz, 1974
- First series production was the MercedesBenz Distronic in 1999.
- High frequency allows small size and weight.
- 77 and 79 GHz frequency bands
- Highly integrated with SiGe chipset
- The costs can be reduced drastically

- When electromagnetic waves come into contact with an object they are usually reflected or scattered in many directions.
- This is particularly true for electrically conductive materials
- Radar absorbing materials also exist, containing resistive and sometimes magnetic substances.
- Radar waves scatter in a variety of ways depending on the size (wavelength) of the radio wave and the shape of the target.
- If the wavelength is much shorter than the target's size, the wave will bounce off in a way similar to the way light is reflected by a mirror.
- If the wavelength is much longer than the size of the target, the target may not be visible because of poor reflection.

Radar Equation I.

- An isotropic radiator is a theoretical, lossless, omnidirectional (spherical) antenna.
- The nondirectional power density:
- at distance R,
- with P_{Tx} transmitter power:

$$
S_{t}=\frac{P_{T x}}{4 \pi R^{2}}\left[\frac{W}{m^{2}}\right]
$$

Radar Equation II.

- Radars use directional antennas to channel most of the radiated power in a particular direction.
- The Gain (G) of an antenna is the ratio of power radiated in the desired direction as compared to the power radiated from an isotropic antenna
- The power density at a distant point from a radar with an antenna gain of $G_{T x}$ is the power density from an isotropic antenna multiplied by the radar antenna gain.
- $S_{t}=\frac{P_{T x} G_{T x}}{4 \pi R^{2}}\left[\frac{W}{m^{2}}\right]$

source: eetimes.com

Radar Cross-Section

- Radar cross-section (RCS) determines how well the object can be detected by the radar.
- The unit is m^{2}
- The factors that influence RCS:
- Material
- Absolute and relative size

- Incident and reflected angles
- Polarization of the transmitted and the received radiation with respect to the orientation of the target.
- Insect: $0.00001 \mathrm{~m}^{2}$
- Human: $1 \mathrm{~m}^{2}$
- Motorcycle: $10 \mathrm{~m}^{2}$
- Car: 30-200 m²
- Cargo aircraft: up to $100 \mathrm{~m}^{2}$
- B-26 Invader bomber aircraft: $3100 \mathrm{~m}^{2}$
- F-22 Raptor stealth fighter: $0.0001 \mathrm{~m}^{2}$

Radar Equation III.

- With the radar cross section (σ) the power can be calculated on a given object in a given distance:

$$
P_{t}=\frac{P_{T x} G_{T x}}{4 \pi R^{2}} \sigma[W]
$$

- In the common case where the transmitter and the receiver are at the same location:

$$
S_{r}=\frac{P_{T x} G_{T x} \sigma}{\left(4 \pi R^{2}\right)^{2}}\left[\frac{W}{m^{2}}\right]
$$

Radar Equation IV.

- The received power depends on the effective aperture of the receiving antenna $\left(A_{r}\right)$:

$$
P_{R x}=\frac{P_{T x} G_{T x} \sigma A_{r}}{\left(4 \pi R^{2}\right)^{2}}[W]
$$

- which can be expressed with wavelength and antenna gain:

$$
A_{r}=\frac{G_{R x} \lambda^{2}}{4 \pi}
$$

- Results in:

$$
P_{R x}=\frac{P_{T x} G_{T x} G_{R x} \lambda^{2}}{(4 \pi)^{3} R^{4}} \sigma[W]
$$

In monostatic case the transmitter and the receiver is the same

$$
G_{T x}=G_{R x}
$$

Radar Equation V.

- Solving for range R, we obtain the classic radar equation

$$
R=\sqrt[4]{\frac{P_{T x} G^{2} \lambda^{2} \sigma}{P_{R x}(4 \pi)^{3}}}[m]
$$

- For a given radar most values can be regarded as constant. The radar crosssection varies heavily.
- The maximum range can be calculated with the smallest received power. (Smaller power cannot be used since it lost in the noise.)
- When calculating the radar equation we assume that the EM waves propagate under ideal conditions. But in practice the equation is extended by the loss factor L.

$$
R_{\max }=\sqrt[4]{\frac{P_{T x} G^{2} \lambda^{2} \sigma}{P_{R x _} \min (4 \pi)^{3} L}}[m]
$$

- The loss factor includes:
- Internal attenuation of the radar
- Fluctuation losses: the temporal changes of the object course cause fluctuation of the reception field
- Atmospheric losses

Pulse radars

- Emitting short and powerful pulses and receiving echo signals.
- Transmit pulse duration $\tau=0.1 . .1 \mu \mathrm{~s}$
- Period time T $\approx 1 \mathrm{~ms}$
- Distance measurement
- Pulse time-of-flight

$$
R=\frac{c t}{2}
$$

- Example: $\mathrm{d}=1 \mathrm{~km}, \mathrm{c}=2.99 \mathrm{e} 8 \mathrm{~m} / \mathrm{s}->6.67 \mu \mathrm{~s}$
- Applications
- Designed for long distances, air traffic control, meteorology, military

CW radars

- Continuous-wave radar is a type of radar system where a known constant frequency and constant amplitude continuous wave radio energy is transmitted and then received from any reflecting objects.
- It cannot measure a range and it cannot differ between two or more reflecting objects.
- It can measure the speed only by using the Doppler-effect.
- Typical application in transportation is traffic control radar.

Doppler-effect

- Doppler-effect is the change in frequency caused by motion between the source and the reflector. Christian Doppler (1803-1853) was an Austrian mathematician and physicist.
- The relation between the detected frequency f and the emitted frequency f_{0} :

$$
f=\left(\frac{c+v_{r}}{c+v_{s}}\right) f_{0}
$$

- where \boldsymbol{c} is the velocity of waves in the medium; $\boldsymbol{v}_{\boldsymbol{r}}$ is the velocity of the receiver relative to the medium; positive if the receiver is moving towards the source; $\boldsymbol{v}_{\boldsymbol{s}}$ is the velocity of the source relative to the medium;

By Lookang many thanks to Fu-Kwun Hwang and author of Easy Java Simulation = Francisco Esquembre - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=16444998

Doppler-effect in practice

- If the speeds are small compared to the speed of wave:

$$
\begin{gathered}
f=\left(1+\frac{\Delta v}{c}\right) f_{0} \\
\Delta f=\frac{\Delta v}{c} f_{0}
\end{gathered}
$$

- In case of radars the Doppler-effect affects the wave toward the target as well as back to the radar.

$$
\Delta f=\frac{2 \Delta v}{c} f_{0}
$$

Vehicle Industry: FMCW radar

WMMNA

Source: Nautical Software

- Another form of distance measuring radar is based on frequency modulation.
- Continuous wave radar without modulation, cannot determine target distance.
- Pulse radars need high power
- Nowadays in the vehicle industry, the mainly used radar technology is FMCW:
- Frequency Modulated Continuous Wave
- Smaller, cheaper, lower power
- Lower distance
- Enables distance and speed measurements
- The carrier frequency is modulated with a periodic signal.
- Most commonly sawtooth

FM modulation signals and differences

amplitude

FMCW signal processing basics (static)

$\tau=\frac{2 R}{c}$
$f_{w} / B_{s}=\tau / T$
$B_{s}=f_{\text {max }}-f_{\text {min }}$
$R=\frac{c T f_{w}}{2 B_{s}}$

- Sawtooth modulation signal is assumed.
- Ideally, the wave reflected from distance \mathbf{R} is the copy of the emitted wave with delay $\boldsymbol{\tau}$ proportional with the distance
- The receiver output signal is a sinusoid and its f_{w} frequency is constant in $\boldsymbol{T} \boldsymbol{-} \boldsymbol{\tau}$.
- Determining the frequency is also determining the distance of the resulting signal

FMCW (moving object) I.

- In case the object moves from distance $\boldsymbol{R}_{\boldsymbol{0}} \uparrow$ with \boldsymbol{v}_{r} velocity, the delay is not constant. Assuming that $\boldsymbol{v}_{\boldsymbol{r}} \ll \boldsymbol{c}$, then the delay is a linear function of time:

$$
\tau \approx \frac{2}{c}\left(R_{0}+v t\right)
$$

- The change in delay is a quite slow process, therefore it can be detected in the change in the phase response. By evaluating more modulation period, the Doppler frequency can be estimated.
- Therefore estimation need to be made for f_{w}, and f_{d} (Doppler) frequencies. Now the two sums up in the beat signal ($\Delta \mathrm{f})$.

2D discrete Fourier-transformation

- In case of sawtooth modulation
- Fast Fourier Transformation (FFT)
- FFT for all chirp resulting in $\left(f_{w}+f_{d}\right)$. Since $f_{w} \gg f_{d}$, approx. for distance is given.
- FFT from multiple periods FFT results in the 2D spectrum of the signal.
- From this, distance and speed can be evaluated.

FMCW (moving object) II.

- In case of triangular modulation
- Allows easy separation of the difference $f_{b}=\frac{2 B_{s} R}{c T}$ frequency $\left(f_{b}\right)$ and Doppler frequency $\left(f_{d}\right)$
$f_{d}=\frac{2 v_{r}}{\lambda}$

$f_{b u}=f_{b}-f_{d}$ $f_{b d}=f_{b}+f_{d}$
$R=\frac{c T}{4 B_{s}}\left(f_{b d}+f_{b u}\right)$
$v_{r}=\frac{\lambda}{4}\left(f_{b d}-f_{b u}\right)$

Multi-Target Problem

- Two targets
- Both pairs of linear slopes give a total of four intersections, two of which are the ghost targets

Multi-Target Solution

- The problem can be resolved by measuring cycles with different slope steepness's

Example Multi-Target Solution

- A single period of chirp sequence is composed of four short chirp sequences with different frequency slopes.

$$
-\left(a_{1}, a_{2}, a_{3}, a_{4}\right)-\left(a_{2}, a_{4}, a_{1}, a_{3}\right)
$$

Angle of Arrival (AOA) estimation

- Angle Estimation requires at least 2 RX antennas.
- The differential distance from the object to each of the antennas results in a phase change in the Fourier-transformation peak.

$$
\begin{gathered}
\omega=\frac{2 \pi \Delta d}{\lambda} \\
\omega=\frac{2 \pi d \sin (\theta)}{\lambda} \\
\theta=\sin ^{-1}\left(\frac{\lambda}{2 \pi d}\right)
\end{gathered}
$$

- The maximum FoV that can be serviced by two antennas spaced d apart is

$$
\begin{gathered}
\theta_{\max }=\sin ^{-1}\left(\frac{\lambda}{2 d}\right) \\
(|\omega| \text { should be less than } \pi)
\end{gathered}
$$

RX antennas

FMCW Radar Design

- Carrier frequency: $76-81 \mathrm{GHz}, \mathrm{mm}$ wavelength
- Max distance: determines chirp length T (min. 2R/c)
- Distance resolution
- Distinguish between two close targets.
- R_{1} and R_{2} distance, the frequency distance:

$$
\Delta f_{\mathrm{w}}=\left|f_{w 1}-f_{w 2}\right|=\frac{2 B_{s}}{c T}\left|R_{1}-R_{2}\right|=\frac{2 B_{s}}{c T} \Delta R
$$

- To separate two targets with Fourier transform minimal f_{w} frequency have to be at least 1/T :

$$
\Delta f_{\text {wmin }}=\frac{1}{T}=\frac{2 B_{s}}{c T} \Delta R_{\text {min }} \rightarrow \Delta R_{\text {min }}=\frac{c}{2 B_{s}}
$$

- Bandwidth: $B_{s}=\frac{c}{2 \Delta R_{\text {min }}}$
- Maximal speed: based on speed and wave length, the Doppler-frequency:

$$
f_{d \max }=\frac{2 v_{\max }}{\lambda}
$$

- Sampling: at least the double of the BW or the beat frequency

$$
\begin{aligned}
& f_{b \max }=f_{w \max }+f_{\text {dmax }} \\
& f_{s}=\max \left(2 \cdot f_{\text {bmax }}, B_{s}\right)
\end{aligned}
$$

FMCW radar block diagram

FMCW radar HW architecture

Bosch MRR Specs

Features	MRR	MRR rear
Frequency	$76 \ldots . .77 \mathrm{GHz}$	$76 \ldots . .77 \mathrm{GHz}$
Range	$0.36 \ldots .160 \mathrm{~m}$	$0.36 \ldots .80 \mathrm{~m}$
FoV (hor.)	$\pm 6^{\circ}(160 \mathrm{~m}) ; \pm 9^{\circ}(100 \mathrm{~m}) ; \pm 10^{\circ}(60 \mathrm{~m}) ; \pm 25^{\circ}$ $(36 \mathrm{~m}) ; \pm 42^{\circ}(12 \mathrm{~m})$	$\pm 5^{\circ}(70 \mathrm{~m}) ;$ $\pm 75^{\circ}($ close range $)$
Accuracy	$0.12 \mathrm{~m}, 0.11 \mathrm{~m} / \mathrm{s}, \pm 0,3^{\circ}$	$0.12 \mathrm{~m}, 0.14 \mathrm{~m} / \mathrm{s}, \pm 0.8^{\circ}$
Resolution	$0.72 \mathrm{~m}, 0.66 \mathrm{~m} / \mathrm{s}, 7^{\circ}$	$0.72 \mathrm{~m}, 1.4 \mathrm{~m} / \mathrm{s}, 7^{\circ}$
Max. number of objects	32	
Dimensions in mm	$70 \times 82 \times 30$ (with connectors)	$70 \times 82 \times 30$ (with connectors)
Weight	190 g	190 g
Power consumption	4.5 W	4.5 W

Radar Functions

- Radar is the core sensor of driver assistance systems
- Functions
- Object detection and classification
- Adaptive cruise control (distance control)
- Collision warning and avoidance
- Blind spot detection
- Parking Aid
- Pros
- Low sensibility to weather conditions, not sensible to light
- For safety critical applications
- Small size and low price
- Cons
- Object classification is hard
- Reflections can cause disturbance

Continental Radar Specs

Features	ARS 408-21
Frequency	$76 . . .77$ GHz
Range	0.20... 250 m
FoV (hor.)	$\pm 9^{\circ}(250 \mathrm{~m}) ; \pm 40^{\circ}(70 \mathrm{~m}) ; \pm 60^{\circ}(20 \mathrm{~m})$;
Accuracy	$\begin{aligned} & 0.12 \mathrm{~m} ; 0.03 \mathrm{~m} / \mathrm{s} ; \\ & \pm 0.1^{\circ}(250 \mathrm{~m}), \pm 1^{\circ}(70 \mathrm{~m}), \pm 5^{\circ}(20 \mathrm{~m}) \end{aligned}$
Resolution	$\begin{aligned} & 1.79 \mathrm{~m}(250 \mathrm{~m}), 0.39 \mathrm{~m}(70 \mathrm{~m}) ; 0.10-0.12 \mathrm{~m} / \mathrm{s} \text {; } \\ & \pm 1.6^{\circ}(250 \mathrm{~m}) ; \pm 4.5^{\circ}(70 \mathrm{~m}) ; \pm 12.3^{\circ}(20 \mathrm{~m}) \end{aligned}$
Max. number of objects	100
Dimensions in mm	$138 \times 91 \times 31$ (with connectors)
Weight	320 g
Power consumption	6.6 W

Conti ARS 408-21 I.

- The sensor uses FMCW radar technology to analyse its surroundings.
- The reflected signals are available in form of clusters and objects.
- Clusters are radar reflections
- Position, velocity and signal strength
- Newly evaluated every cycle
- Objects have a history and dimension
- They consist of tracked clusters

Conti ARS 408-21 II.

- The position is given in a Cartesian Coordinates System relative to the sensor.
- The velocity is calculated relative to an assumed vehicle course.
- The course is determined by using the speed and yaw rate information
- The output cluster and object lists can be filtered by setting filter criteria based on their attributes.
- The clusters or objects of interest that are sent on the CAN-bus can be selected.

Conti ARS 408-21 III.

- The sensor has one CAN interface with a transmission rate of 500 kbits/s. It is used for
- configuration
- sensor state output
- other data input and output (e.g. yaw rate and velocity information)
- Up to eight sensors can be added to one CAN bus
- The sensor ID can be configured, which will change the message IDs.
- E.g. the configuration message 0×200 for sensor ID 0, will be 0×210 for sensor ID 1.

Conti ARS 408-21 IV.

- Configuration of the radar sensor is very simple
- It can be set with one CAN message
- It is enough to send once
- The config can be stored in the non/volatile memory (NVM), if it is activated in the config message
- The parameters can be changed individually or in combinations.
- Which parameters can be configured?
- Sensor ID (modifies the CAN IDs)
- Maximum far distance
- Radar power
- Output type
- Quality information
- Extended information
- Sort index
- Relay control
- RCS threshold
- Store in NVM

Conti ARS 408-21 V.

- The sensor can filter the output data.
- Multiplexed message is used
- filter clusters or objects
- filter criteria (filter index)
- The filters are designed as pass though filters
- min - max
- Filter criterion
- Number of object
- Distance, azimuth, signed relative vel. (abs. , x, y)
- RCS, size, lifetime
- Probability of existence
- X, Y
- Object class: point, car, truck, motorcycle, bicycle, wide

Conti ARS 408-21 VI.

- One can choose from clusters and objects
- Clusters and objects are sent in a similar way, but with different CAN IDs and data.
- Object information
- Status
- General
- Quality
- Extended
- Warning

Conti ARS 408-21 VII.

- Object general information
- ID
- Longitudinal and vertical distances
- Longitudinal and vertical relative velocities
- Dynamic property: moving, stationary, oncoming, stationary candidate, unknown, crossing stationary, crossing moving, stopped
- RCS
- Object quality information
- ID
- Standard deviation of every distances, velocities, accelerations and orientation angle
- Measurement state: new, predicted, measured and deleted
- Probability of existence
- Object extended information
- ID
- Longitudinal and vertical relative accelerations
- Class (See slide 35!)
- Orientation angle
- Dimensions

BUDAPESTI MUUSZAKJ ÉS GAZDASÁGTUDOMÁNYI EGYETEM

Dr. Szilárd Aradi

email: aradi.szilard@mail.bme.hu

Thank you for your attention!

