Automotive Environment Sensing

02 - Introduction to probability

Olivér Törő
2019

Event algebra

Basic concepts

- Sample space ($\boldsymbol{\Omega}$): set of all possible events
- Elementary events (ω) : disjoint events with a single outcome
- Set of events \boldsymbol{F} : some or all subsets of Ω, that is the power set of Ω : $F \subseteq 2^{\Omega}$ and an algebra defined on it (σ-algebra)
- Events $(\boldsymbol{A}, \boldsymbol{B}, \ldots)$: subsets of F, can be elementary or complex
- Probability measure $P: F \rightarrow[0,1]$: real valued additive function
- An event has probability: e.g. $P(A), P(\neg A), P(A \cap B)$ etc.
- Certain event: $P(\Omega)=1$, impossible event: $P(\varnothing)=0$
- The triplet (Ω, F, P) defines a probability space

Event algebra - example

Dice Roll

- Sample space ($\boldsymbol{\Omega}$): $\{1,2,3,4,5,6$, even, odd, >3, etc $\}$
- Elementary events (ω): $\{1,2,3,4,5,6\}$
- Set of considered events (F): eg.: $\{\varnothing, 1,2,3,4,5,6$, even $\}$
- Events ($\boldsymbol{A}, \boldsymbol{B}, \ldots$): $\{2$, even, greater than 3 and odd, $4 \& 5$, etc $\}$
- Probability measure $P: F \rightarrow[0,1]$: "favorable cases/possible cases" (Laplace)
- An event has probability: e.g. $P(A), P(\neg A), P(A \cap B)$ etc.
- Certain event: $P(\Omega)=1$, impossible event: $P(\varnothing)=0$
- The triplet (Ω, F, P) defines a probability space

Event algebra - conditional probability

- Conditional probability (definition)

$$
\begin{aligned}
& P(A \mid B):=\frac{P(A \cap B)}{P(B)} \\
& P(A \cap B)=P(A \mid B) P(B)=P(B \mid A) P(A)
\end{aligned}
$$

- Independent events

$$
\begin{aligned}
& P(A \mid B)=P(A) \text { és } P(B \mid A)=P(B) \\
& P(A \cap B)=P(A) P(B)
\end{aligned}
$$

- Collectively exhaustive events

$$
\bigcup_{i=1}^{N} B_{i}=\Omega \quad B_{i} \cap B_{j}=\varnothing
$$

Correlation and causality

- Consider two events A and B with the following inequality

$$
P(B \mid A)>P(B \mid \neg A)
$$

- What does it indicate?

Dice roll example: $B=<6>, A=<$ even $>$

$$
P(<6>)=1 / 6 \quad P(<\text { even }>)=\frac{1}{2}
$$

LHS

$$
P(B \mid A)=\frac{P(B \cap A)}{P(A)}=\frac{1 / 6}{1 / 2}=\frac{1}{3} \quad \text { as expected }
$$

Correlation and causality

RHS

$$
\begin{array}{r}
P(B \mid \neg A)=\frac{P(B \cap \neg A)}{P(\neg A)} \\
\frac{P(B)-P(B \cap A)}{1-P(A)}=\frac{1 / 6-1 / 6}{1-1 / 2}=0
\end{array}
$$

cannot roll 6 and odd at the same time

- The inequality $P(B \mid A)>P(B \mid \neg A)$ seems to indicate that event A increases the probability of event B and there is an asymmetric relation between them
- The relation is symmetric actually

Correlation and causality

- $\quad P(B \mid A)>P(B \mid \neg A)$ and $P(A \mid B)>P(A \mid \neg B)$ implies the same, symmetric relation:
- Events A and B are correlated but no casual relation can be read out from these inequalities
- Either there is a causal relation between A and B or there is a common cause
- Think about: smoking - yellow finger tips - lung cancer, water level in Venice - price of bread in London

Monty Hall problem

Monty Hall problem

Monty Hall problem

- So we are better off changing our mind: $\frac{1}{3} \rightarrow \frac{2}{3}$
- But why not $50-50 \%$?
- The situation when the host opens a door in
 advance and you choose from the two remaining doors is the same or not?
- Not the same, because the action of the host depends on our choice
- The host tells us information by opening a door

Bayes-theorem

- Law of total probabilities

$$
P(A)=\sum_{i=1}^{N} P\left(A \cap B_{i}\right)=\sum_{i=1}^{N} P\left(A \mid B_{i}\right) P\left(B_{i}\right)
$$

- Bayes-theorem

$$
P\left(B_{k} \mid A\right)=\frac{P\left(A \mid B_{k}\right) P\left(B_{k}\right)}{P(A)}=\frac{P\left(A \mid B_{k}\right) P\left(B_{k}\right)}{\sum_{i=1}^{N} P\left(A \mid B_{i}\right) P\left(B_{i}\right)}
$$

Usual terminology
Posterior: $P\left(B_{k} \mid A\right)$
Prior: $P\left(B_{k}\right)$

Likelihood: $P\left(A \mid B_{k}\right)$
Evidence, marginal likelihood: $P(A)$

Bayesian inference

Application of the Bayes-theorem for hypothesis testing

- We have a prior probability, that hypothesis H is true: $P(H)$
- We observe an event E, which is the evidence or observation and associate the probability: $P(E)$
- The likelihood that E happens given H is true is: $P(E \mid H)$
- The posterior probability that H is true is given by

$$
P(H \mid E)=\frac{P(E \mid H) P(H)}{P(E)}=\frac{P(E \mid H) P(H)}{P(E \mid H) P(H)+P(E \mid \neg H) P(\neg H)}
$$

Hypothesis test - loaded coin

- Someone is tossing a coin in the next room and tells us the results
- We have two hypotheses
- The coin is loaded and produces $<$ heads $>$ with $70 \%(L)$
- The coin is fair and does $50 \%-50 \%(\neg L)$
- We give probability $\mathrm{P}_{0}(L)$ that the coin is loaded (at the beginning)
- Based on what we hear, how shall we change our belief?
- The probabilities of the outcomes conditioned on the hypotheses are:

$$
\begin{array}{rl}
P(<\text { heads }>\mid L)=0.7 & P(<\text { tails }>\mid L)=0.3 \\
P(<\text { heads }>\mid \neg L)=0.5 & P(<\text { tails }>\mid \neg L)=0.5
\end{array}
$$

Hypothesis test - loaded coin

- Say the first toss gives $<$ heads $>$ which results in:

$$
\begin{gathered}
P_{1}(L)=P_{0}(L \mid<\text { heads }>) \\
P_{1}(L)=\frac{P_{0}(<\text { heads }>\mid L) P_{0}(L)}{P_{0}(<\text { heads }>\mid L) P_{0}(L)+P_{0}(<\text { heads }>\mid \neg L) P_{0}(\neg L)} \\
P_{1}(L)=\frac{0.7 P_{0}(L)}{0.7 P_{0}(L)+0.5\left(1-P_{0}(L)\right)}
\end{gathered}
$$

- If we would have $<$ tails $>$ instead:

$$
\begin{gathered}
P_{1}(L)=\frac{P_{0}(<\text { tails }>\mid L) P_{0}(L)}{P_{0}(<\text { tails }>\mid L) P_{0}(L)+P_{0}(<\text { tails }>\mid \neg L) P_{0}(\neg L)} \\
P_{1}(L)=\frac{0.3 P_{0}(L)}{0.3 P_{0}(L)+0.5\left(1-P_{0}(L)\right)}
\end{gathered}
$$

Hypothesis test - loaded dice

With a concrete prior belief: $P_{0}(L)=0.2$

- 1. outcome: < heads $>$:

$$
P_{1}(L)=\frac{0.7 \times 0.2}{0.7 \times 0.2+0.5 \times(1-0.2)}=0.26
$$

- 1. outcome: < tails $>$:

$$
P_{1}(L)=\frac{0.3 \times 0.2}{0.3 \times 0.2+0.5 \times(1-0.2)}=0.13
$$

Hypothesis test - loaded dice

If we get two $<$ heads $>$ in a row:

$$
\begin{gathered}
P_{2}(L)=P_{1}(L \mid<\text { heads }>) \\
P_{2}(L)=\frac{0.7 \times 0.26}{0.7 \times 0.26+0.5 \times(1-0.26)}=0.33
\end{gathered}
$$

- The second evidence also increases our belief but with a smaller amount
- This is a recursive process where we use the last result as prior
- We can have more than one concurrent hypotheses about a parameter (or a variable)
- In fact we can have continuously many hypotheses (from a parameter space or a state space)

Binomial distribution

- The probability to get k success from n trials is

$$
B(k ; n, p)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

- p is the probability of one trial to succeed
- k is the free variable
$\binom{n}{k}=\frac{n!}{k!(n-k)!}$ is the binomial coefficient
- Pronounce: n choose k
- You can choose k out of n that many ways

Binomial distribution

- Coin flip
- 6 trials
- Getting 3 heads and 3 tails is the most probable outcome
- Increasing the number of trials will produce Gaussian-like histogram

Central limit theorem

Budapest University of Technology and Economics

```
%% Central limit theorem
% Dice roll
n = 1e4;
R = sum(round(6*rand(n)));
histogram(R)
```


Tossing a coin n times and getting k heads

- https:/ /phet.colorado.edu/sims/html/plinko-probability/latest/plinko-probability hu.html

Normal distribution

- Is the limit of the
- Binomial distribution: $B(k ; n, p) \rightarrow N(k ; n p, n p(1-p))$
- Poisson distribution: $P(k ; \lambda) \rightarrow N(k ; \lambda, \lambda)$
- Chi-squared distribution: $\chi^{2}(k) \rightarrow N(k, 2 k)$

- Generally, the sum of independent, identically distributed random variables tends toward a normal distribution
- For a given mean and variance this is the maximum entropy distribution
- It is the least informative distribution
- It minimizes the information that we assume to be there
- Physical systems generally move towards equilibrium, that is maximum entropy state
- It has nice mathematical properties

Normal distribution

$$
f\left(x ; \mu, \sigma^{2}\right)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}
$$

Create Gaussian noise

- Usually we have a random number generator
- We can generate a random number in the interval $0 \ldots 1$
- The standard deviation is $\frac{1}{\sqrt{12}}$
- The mean is 0.5

Algorithm

1. Add 12 random numbers $(\mu=6, \sigma=1)$
2. Subtract $6(\mu=0, \sigma=1)$
3. Multiply by the desired STD
4. Add the desired mean
```
x = sum(rand(12,1e4));
x = x - 6;
x = x * 3;
x = x + 8;
histogram(x,'normalization
','pdf')
hold on
t = (-
3*sigma:0.1:3*sigma)+mu;
plot(t,normpdf(t, 8,3))
```


Gaussian vs White noise

- Gaussian noise and white noise are not synonyms
- Gaussian refers the distribution of the amplitude
- White means that the values are not correlated in time. The intensity is the same at all frequencies and the PDF can be any
- A random signal can be white and Gaussian
- This is a desired property
- Tractable analytic models
- Good approximation of real-world situations
- Additive White Gaussian Noise (AWGN)

Multivariate normal distribution

- Joint and multivariate distributions are synonyms

$$
\begin{aligned}
& f(\mathbf{x})=f\left(x_{1}, x_{2}, \ldots, x_{k}\right) \\
& =\frac{1}{\sqrt{(2 \pi)^{k} \operatorname{det}(\Sigma)}} \exp \left(-\frac{1}{2}(\mathbf{x}-\mu)^{T} \Sigma^{-1}(\mathbf{x}-\mu)\right)
\end{aligned}
$$

Modelling uncertainties

- Additive noise acting on the motion and sensor model

$$
\begin{gathered}
\mathrm{x}_{k+1 \mid k}=f_{k}\left(\mathrm{x}_{k}\right)+w_{k} \\
\mathrm{z}_{k}=h_{k}\left(\mathrm{x}_{k}\right)+v_{k} \\
\text { random deterministic random }
\end{gathered}
$$

- How do we create probabilities from these random variables?
- Since x and Z are usually continuous variables, the probabilities of taking specific values are zero.
- However, x and z residing in some region S and T have nonzero probabilities

$$
P\left(\mathrm{x}_{k+1 \mid k} \in S \mid \mathrm{x}_{k}\right) \quad P\left(\mathrm{z}_{k} \in T \mid \mathrm{x}_{k}\right)
$$

Modelling uncertainties

- The probability mass is given by integrating the probability density over a region

$$
P\left(\mathrm{x}_{k+1 \mid k} \in S \mid \mathrm{x}_{k}\right)=\int_{S} p\left(\mathrm{x} \mid \mathrm{x}_{k}\right) \mathrm{d} \mathrm{x} \quad P\left(\mathrm{z}_{k} \in T \mid \mathrm{x}_{k}\right)=\int_{T} p\left(\mathrm{z} \mid \mathrm{x}_{k}\right) \mathrm{d} \mathrm{z}
$$

- $p\left(\mathrm{x} \mid \mathrm{x}_{k}\right)$ is the probability density function associated to the uncertain motion model
- $p\left(\mathrm{z} \mid \mathrm{x}_{k}\right)$ is the probability density function associated to the uncertain sensor model
- If the additive noise is zero mean Gaussian

$$
p\left(\mathrm{x} \mid \mathrm{x}_{k}\right)=\mathcal{N}\left(\mathrm{x} ; f_{k}\left(\mathrm{x}_{k}\right), \sigma_{w}^{2}\right)
$$

- Similarly for the sensor model

$$
p\left(\mathrm{z} \mid \mathrm{x}_{k}\right)=\mathcal{N}\left(\mathrm{z} ; h_{k}\left(\mathrm{x}_{k}\right), \sigma_{v}^{2}\right)
$$

Hidden Markov model (HMM)

- In the context of state estimation (robotics) the value to be estimated is the state (or state vector in general) of an object or an ensemble of objects
- The state in unknown to us (hidden) and possibly evolves in time: the system has dynamics
- We can observe the system and obtain a limited amount of information, for example
- Partial observation of the state
- Noisy measurements

Markov assumptions

- The current state depends only on the previous state

$$
p\left(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}, \mathbf{x}_{k-2}, \ldots, \mathbf{x}_{0}\right)=p\left(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}\right)
$$

- The measurement depends only on the current state

$$
p\left(\mathbf{z}_{k} \mid \mathbf{x}_{k}, \mathbf{x}_{k-1}, \ldots, \mathbf{x}_{0}\right)=p\left(\mathbf{z}_{k} \mid \mathbf{x}_{k}\right)
$$

Recursive Bayesian estimation (in discrete time)

- Estimate the state vector at timestep k using measurements up to k :

$$
p\left(\mathrm{x}_{k} \mid \mathrm{z}_{1: k}\right)=\frac{p\left(\mathrm{z}_{k} \mid \mathrm{x}_{k}\right) p\left(\mathrm{x}_{k} \mid \mathrm{z}_{1: k-1}\right)}{p\left(\mathrm{z}_{k} \mid \mathrm{z}_{1: k-1}\right)}
$$

- The denominator is constant and can be expressed as

$$
P\left(B_{k} \mid A\right)=\frac{P\left(A \mid B_{k}\right) P\left(B_{k}\right)}{\sum_{i=1}^{N} P\left(A \mid B_{i}\right) P\left(B_{i}\right)} \quad \begin{aligned}
& \text { This was the } \\
& \text { Bayes-theorem }
\end{aligned}
$$

$$
p\left(\mathrm{z}_{k} \mid \mathrm{z}_{k-1}\right)=\int p\left(\mathrm{z}_{k} \mid \mathrm{x}_{\mathrm{k}}\right) p\left(\mathrm{x}_{k} \mid \mathrm{z}_{k-1}\right) \mathrm{d}_{k}
$$

- The prior, with the help of a model of the system is obtained from the pervious posterior through the time-prediction integral (Chapman-Kolmogorov integral):

$$
p\left(\mathrm{x}_{k} \mid \mathrm{z}_{1: k-1}\right)=\int p\left(\mathrm{x}_{k} \mid \mathrm{x}_{\mathrm{k}-1}\right) p\left(\mathrm{x}_{k-1} \mid \mathrm{z}_{1: \mathrm{k}-1}\right) \mathrm{d}_{k-1}
$$

motion model previous posterior

Accuracy, precision

The quality of a sensor can be described by its precision and accuracy

- Accuracy
- Measures the systematic error (bias)
- Related to the mean of the measurement

- Precision
- Measure the random error (variability)
- Related to the variance (standard deviation) of the measurement

'Terminology in estimation

- Statistic: a function of the data
- Estimator: a function of the data that intends to describe some property of the underlying distribution
- A statistic is not good or bad(or biased or unbiased). It is just a function
- An estimator can be good (unbiased, minimum variance etc.). E.g.: the sample mean is an unbiased estimator of the expected value
- Filtering: estimate x_{t} based on measurements $z_{1: t}$
- Prediction: estimate $x_{t+\tau}$ based on measurements $z_{1: t}$
- Smoothing: estimate $x_{t-\tau}$ based on measurements $z_{1: t}$

Metric - Euclidean

Calculate "real distance" from coordinate differences

- Distance of two points in 3D: $d\left(P_{1}, P_{2}\right)$

$$
d\left(P_{1}, P_{2}\right)=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}}
$$

Euclidean metric (in Cartesian coordinates)
Are there other ways to get a distance?

Metric - Polar

Polar coordinate system

- $x=r \cos \varphi$
- $y=r \sin \varphi$

We can also have cylindrial, toroidal, etc coordinate systems

$$
d=\sqrt{r_{1}^{2}+r_{2}^{2}-2 r_{1} r_{2} \cos \left(\varphi_{1}-\varphi_{2}\right)}
$$

$d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$

Metric

- You can make up and use any metric if it is meaningful in a way
- Metric is not just to calculate a physical distance, it can be any "distance" that is useful
- A typical application is to measure the error between some true and measured or estimated quantities (e.g. a signal or a state vector)
- Distance between states: error metric

$$
\begin{gathered}
\mathbf{x}=\left[x, v_{x}, y, v_{y}\right] \quad \hat{\mathbf{x}}=\left[\hat{x}, \hat{v}_{x}, \hat{y}, \hat{v}_{y}\right] \\
d(\mathbf{x}, \hat{\mathbf{x}})=?
\end{gathered}
$$

RMS - Root Mean Square

- The voltage in the wall is 230 V , which is the effective value of the alternating sinusoidal signal.
- This is the RMS value of a sinusoidal signal that has 325 V peak voltage.

- Sometimes we want to describe a signal with a single number to be able to easily compare them.
- Common choices: maximum (minimum) value, average value, RMS value.

RMS - Root Mean Square

- Computing the RMS of a signal in the time domain results the same as computing it in the frequency domain.
- The RMS value is invariant to the Fourier transform
- A method to verify the result of a FFT
- It is a property of a physically existing signal, not just a property of the chosen representation
- It indicates the energy carried by the signal
- In the context of electricity V_RMS ${ }^{2}$ /RESISTANCE is the power

RMS - RMSE

- $x_{R M S}=\sqrt{\frac{1}{n}\left(x_{1}^{2}+x_{2}^{2}+\cdots x_{n}^{2}\right)}=\sqrt{\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}}$
- $x_{R M S E}=\sqrt{\frac{1}{n}\left(e_{1}^{2}+e_{2}^{2}+\cdots e_{n}^{2}\right)}=\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(\hat{x}_{1}-x_{1}\right)_{i}^{2}}$
- Sometimes RMS and STD are synonyms
- Mean squared deviation (error) is the square of RMSE

RMS

- x is normally distributed random vector: $x \sim \mathcal{N}(\mu, \Sigma)$
- If x describes a signal what is the expectation of the carried power?

$$
\mathrm{E}\left[\|x\|_{2}^{2}\right]=\|\mu\|_{2}^{2}+\operatorname{tr}(\Sigma)
$$

Mahalanobis distance

- What is the distance of a point to a distribution
- Is this a meaningful question?
- Euclidean distance is always an option between points, but what point represents the distribution?
- The mean!
- Should we consider the variancecovariance?

Mahalanobis distance

```
% Generate a two dimensional Gaussian
n = 1e3;
Mu = [10;20];
Sigma = [3, 2; 2, 3];
x = mvnrnd(Mu, Sigma, n);
plot(x(:,1),x(:, 2),'k.')
hold on; axis equal
% Plot a circle around the centre
(mean) with radius 2
r = 2;
cx = r * cos(0:0.01:2*pi) + Mu(1);
cy = r * sin(0:0.01:2*pi) + Mu(2);
plot(cx,cy,'b-','LineWidth',1.5)
```


Mahalanobis distance

```
% 45 deg line
plot((-5:5)+Mu(1),(-5:5)+Mu(2),
'g','LineWidth',1.5)
% Mean
plot(Mu(1), Mu(2),'k.','MarkerSize', 32)
% Points at 45 and 135 deg
plot(r*cos(pi/4)+Mu(1),
r*sin(pi/4)+Mu(2),'r.','MarkerSize', 32)
plot(r*cos(pi*3/4)+Mu(1),
r*sin(pi*3/4) +Mu(2),'r.','MarkerSize', 32)
```


- These points are equally distant to the origin (regarding Euclidean metric)
- But one of the seems to outlie more than the other
- We should include the variances when calculating the distance!

Mahalanobis distance

- Euclidean distance: $d=\sqrt{\left(x-\mu_{x}\right)^{2}+\left(y-\mu_{y}\right)^{2}}$
- Vectorized form: $d=\sqrt{(\mathbf{x}-\mu)^{\top}(\mathbf{x}-\mu)}$ with $\mathbf{x}=[x, y]^{\top}$ and $\mu=\left[\mu_{x}, \mu_{y}\right]^{\top}$
- Weighted Euclidean distance: $d=\sqrt{\left.\left(\frac{x-\mu_{x}}{\sigma_{x}}\right)^{2}+\left(\frac{y-\mu_{y}}{\sigma_{y}}\right)^{2} \begin{array}{l}\text { Equation of } \\ \text { an ellipse } \\ \text { (scaled by } d \text {) }\end{array}\right)}$ - Vectorized form: $d=\sqrt{(\mathbf{x}-\mu)^{\top}\left[\begin{array}{cc}\sigma_{x}{ }^{-1} & 0 \\ 0 & \sigma_{y}{ }^{-1}\end{array}\right](\mathbf{x}-\mu)}$

- $\Sigma^{-1}=\left[\begin{array}{cc}\sigma_{x}{ }^{-1} & 0 \\ 0 & \sigma_{y}{ }^{-1}\end{array}\right] \quad$ Inverse of the covariance matrix

Mahalanobis distance

- The ellipse is the unit circle when the metric is the Mahalanobis distance
- General case (when rotated):

$$
d=\sqrt{(\mathbf{x}-\mu)^{\top} \Sigma^{-1}(\mathbf{x}-\mu)}
$$

- Weighted scalar product:

$$
(\mathbf{x}-\mu)^{\top} \Sigma^{-1}(\mathbf{x}-\mu)
$$

- The weight is inversely proportional to the variance: the greater the uncertainty the less we take the difference into account
- The Euclidean metric uses no weighting (identity matrix)

- You can make up any metric of this kind by inserting a positive definite matrix as weight. (Σ is PSD, it can be singular!)

Classification with Mahalanobis distance

- Say we have 3 categories described by the distributions: $\mathcal{N}\left(\mu_{i}, \Sigma_{i}\right)$. The point x have the following distances from the distributions:

$$
\begin{aligned}
& D_{1}^{2}=\left(x-\mu_{1}\right)^{\top} S_{1}^{-1}\left(x-\mu_{1}\right) \\
& D_{2}^{2}=\left(x-\mu_{2}\right)^{\top} S_{2}^{-1}\left(x-\mu_{2}\right) \\
& D_{3}^{2}=\left(x-\mu_{3}\right)^{\top} S_{3}^{-1}\left(x-\mu_{3}\right)
\end{aligned}
$$

- To create probabilities from the distances we should normalize them. The normalization factor is

$$
Z=\mathrm{e}^{-D_{1}^{2}}+\mathrm{e}^{-D_{2}^{2}}+\mathrm{e}^{-D_{3}^{2}}
$$

- and the probability of x belonging to category i is

$$
p_{i}=\frac{e^{-D_{i}^{2}}}{Z}
$$

Slope

- For a straight line
- $m=\tan \theta=\frac{\Delta y}{\Delta x}$

2019. 2. 27.

- For a curved line
- $m=\tan \theta=\frac{\mathrm{d} y}{\mathrm{~d} x}$

Linear regression

MATLAB: mldivide

- Solve systems of linear equation: $A x=B$
- Can be an overdetermined system

$$
\left(\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2, n} \\
\vdots & \vdots & \cdots & \vdots \\
a_{n, 1} & a_{n, 2} & \cdots & a_{n, n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right)
$$

More data points than variables. In this case the solution is given by least-squares method

- Usage: $x=m l d i v i d e(A, B)$ or $x=A \backslash B$
- Use to fit a line to data points
- We have $x=\left[x_{1}, x_{2}, \ldots x_{n}\right]$ and $\mathrm{y}=\left[y_{1}, y_{2}, \ldots y_{n}\right]$
- We want to fit a line: $y=m x+b$
- Now we have x and y and the unknown is m

Linear regression

Homogeneous

- $y=m x \rightarrow x m=y$
- Usage: $m=x \backslash y$
- $\varphi=\tan ^{-1} m$

Inhomogeneous

- $y=m x+b \rightarrow x m+b=y$
- $X=[x, \mathbf{1}]$
- Usage: $m b=X \backslash y$
- $m=m b(1) ; b=m b(2)$

Covariance

- Fit a line
- Determine the slope
- Compute covariance
- $\operatorname{cov}(x, y)$
- Play with the parameters:
- Number of data points (1e2)
- Range (200)
- Noise magnitude (15)
- Coefficient of x (2)
- What are their effects?

```
% Noisy data points
```

% Noisy data points
n = 1e2;
n = 1e2;
x = linspace(1,200,n)';
x = linspace(1,200,n)';
y = 2*x +100 + 15*randn(size(x));
y = 2*x +100 + 15*randn(size(x));
figure
figure
hold on; box on
hold on; box on
plot(x,y,'o')
plot(x,y,'o')
% Fit a line: y = m*x+b
% Fit a line: y = m*x+b
X = [x,ones(size(x))];
X = [x,ones(size(x))];
mb = X\y
mb = X\y
m=mb(1); b = mb(2);
m=mb(1); b = mb(2);
fi = atan(m)
fi = atan(m)
plot(x,m*x + b,'r')

```
plot(x,m*x + b,'r')
```


Covariance

- Fit a line
- Determine the slope
- Compute covariance
- $\operatorname{cov}(x, y)$
- Play with the parameters:
- Number of data points: no effect
- Range: increases covariance
- Noise magnitude: no effect
- Coefficient of x : increases covariance
- What does covariance measure?

```
```

% Noisy data points

```
```

% Noisy data points
n = 1e2;
n = 1e2;
x = linspace(1,100,n)';
x = linspace(1,100,n)';
y = 2*x + 100 + 15*randn(size(x));
y = 2*x + 100 + 15*randn(size(x));
figure
figure
hold on; box on
hold on; box on
plot(x,y,'o')
plot(x,y,'o')
% Fit a line: y = m*x+b
% Fit a line: y = m*x+b
X = [x,ones(size(x))];
X = [x,ones(size(x))];
mb = X\y
mb = X\y
m=mb(1); b = mb(2);
m=mb(1); b = mb(2);
fi = atan(m)
fi = atan(m)
plot(x,m*x + b,'r')

```
```

plot(x,m*x + b,'r')

```
```


Covariance

- The definition is:

$$
\operatorname{cov}(X, Y)=\mathrm{E}[(X-\mathrm{E}[X])(Y-\mathrm{E}[Y])]
$$

- For concrete data points the discrete formula is:

$$
\operatorname{cov}(x, y)=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)
$$

- The range of x and y is in $x_{i}-\bar{x}$ and $y_{i}-\bar{y}$
- The coefficient of x effects the range of y

Correlation

- To measure the pure connection between x and y we need to normalize the covariance with the range
- This way we create a measure that is independent of the chosen units. Scale independent
- Definition:

$$
\mathrm{r}=\operatorname{corr}(x, y)=\frac{\operatorname{cov}(x, y)}{\sqrt{\operatorname{var}(x) \operatorname{var}(y)}}=\frac{\operatorname{cov}(x, y)}{\sigma_{x} \sigma_{y}}
$$

Correlation

- The greater the correlation the more x can explain y
- 1: maximal correlation
- 0: no correlation
- -1: maximal anticorrelation r^{2} measures what proportion
 in the variance of y can be explained by x :
- $\operatorname{var}(e)=\left(1-r^{2}\right) \operatorname{var}(y)$

Slope vs correlation

- The slope and the correlation are the same, if $\sigma_{x}=\sigma_{y}$

$$
\tan \varphi=m=\operatorname{corr}(x, y) \sqrt{\frac{\operatorname{var}(y)}{\operatorname{var}(x)}}=r \frac{\sigma_{y}}{\sigma_{x}}
$$

- The closer the correlation to one the more perfect the linear relationship
- The slope does not contain this information
- The slope tells how much y changes with x
- If we swap x and y the correlation remains the same but not the slope!

