SENSING AND MEASUREMENTS

Alexandros Soumelidis, PhD 03 April 2019

BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG

Sensing and measuring

Sensing: observing physical systems by quantities associated with excitations, states, and answers with the purpose of drawing conclusions on their structure and/or their behaviour.

The knowledge acquired by sensing is used for evaluating and/or controlling the system.

Sensing means some type of comparison:

- comparison to some limit of the quantity,
- comparison to some unit quantity \leftarrow measuring.

Measuring:

Comparison with a unit: determining the ratio of a quantity and a quantity unit.

Measuring, metrology

Metrology deals with the derivation of the units associated with quantities, with their physical realisation, and the principles of realising the measurements.

SI units (Le Système International d'Unités - International System of Units, 1960): temperature

Metrology

The definition of the SI units (May 2019): (new)

- **Time:** second (s) The duration of 9,192,631,770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium-133 atom.
- Length: meter (m) The distance travelled by light in vacuum in 1/299,792,458 second.
- Mass: kilogram (kg) The kilogram is defined by setting the Planck constant h exactly to 6.62607015×10⁻³⁴ J·s, where J = kg·m²·s⁻².
- Electric current: amper (A) The flow of 1.602176634×10¹⁹ times the elementary charge *e* (the charge carried by a proton) per second.
- **Temperature: kelvin (K)** The kelvin is expected to be defined by setting the fixed numerical value of the Boltzmann constant k to $1.380649 \times 10-23 \text{ J} \cdot \text{K}-1$, where J = kg·m²·s⁻².
- **mol (mol)** The amount of substance of exactly 6.02214076×10²³ elementary entities (the Avogadro number).

candela (cd) The luminous intensity, in a given direction, of a source that emits monochromatic radiation of frequency 5.4×10¹⁴ hertz and that has a radiant intensity in that direction of 1/683 watt per steradian.

Metrology

The definition of the SI base units has changed a lot since the beginnings, e.g. the **meter**:

According to Metre Convention 1875, Paris 1 m is 1/10,000,000 of the meridian through Paris between the North Pole and the Equator.

According to the derivation of 1889 1 m is the length measured between two notches engraved on of a platinairidium etalon in the temperature of the melting ice.

In1960 1 m was derived as 1,650,763.73 1650763.73 wavelengths in a vacuum of the radiation corresponding to the transition between the 2p10 and 5d5 quantum levels of the krypton-86 atom.

In 1983 meter was defined as the distance travelled by light in vacuum in 1/299,792,458 second (the current definition). Realisation: wavelength of an iodine stabilized helium-neon laser.

By successive redefinitions the relative uncertainty decreased from 10^{-7} to 10^{-11} .

Metrology

SI derived units possessing specific names:

Derived quantities	SI unit	Notation	Expressed with SI units	Expressed with SI base units
frequency	hertz	Hz		s-1
force	newton	N		m · kg · s⁻²
pressure	pascal	Ра	N/m ²	m⁻¹ · kg · s⁻²
energy	joule	J	N · m	m ² · kg · s ⁻²
power	watt	W	J/s	m2 · kg · s ⁻³
electric charge	coulomb	С		s · A
electric potential difference, voltage, electromotive force	volt	V	W/A	m ² · kg · s ⁻³ · A ⁻¹
electric capacity	farad	F	C/V	m ⁻² · kg ⁻¹ · s ⁴ · A ²
electric resistance	ohm	Ω	V/A	$m^2 \cdot kg \cdot s^{-3} \cdot A^{-2}$
electric conductivity	siemens	S	A/V	$m^{-2} \cdot kg^{-1} \cdot s^3 \cdot A^2$
magnetic flux	weber	Wb	V·s	$m^2 \cdot kg \cdot s^{-2} \cdot A^{-1}$
magnetic induction, magnetic flux density	tesla	Т	Wb/m ²	kg · s ⁻² · A ⁻¹
inductivity	henry	н	Wb/A	$m^2 \cdot kg \cdot s^{-2} \cdot A^{-2}$
Luminous flux	lumen	lm	cd · sr	cd
illuminance	lux	lx	lm/m ²	$m^{2} \cdot m^{-4} \cdot cd = m^{-2} \cdot cd$
radioactivity	becquerel	Bq		s-1
ionising radiation dose	gray	Gy	J/kg	m ² · s ⁻²
ionising radiation dose	sievert	Sv	J/kg	m ² · s ⁻²
planar angle	radian	rad		m · m ⁻¹ = 1
spatial angle	steradian	Sr		$m2 \cdot m^{-2} = 1$
catalythic activity	katal	kat		s ⁻¹ · mol

Sensor / transducer: brings a physical quantity into a workable form (workable by a human or anautomaton)

Examples: • Kinematic sensors: speedometer, tachograph

- Dynamical sensors: accelerometer, gyroscope
- Temperature sensors: thermocouple, resistance temperature device (RTD), thermistor
- Pressure sensor: manometer, barometer,
- Electrical sensors: voltmeter, current sensor
- Magnetic sensors: magnetic field detector, compass
- Composite sensors: video camera, GPS, LIDAR

Processing is needed because the sensors usually do not produce the features needed by the user.

The (most typical) reasons:

- Measurement errors, inaccuracies,
- Noises,
- Unwanted internal and environmental effects,
- Crossover between measured parameters.

Sensors typically today

The physical quantities are transformed to

- electrical quantities: voltage, current, frequency, or
- quantities that can be measured by using electrical principles: electrical resistance, capacity, inductivity.

Classification of the sensors by the output generated:

- Analogous: the output quantity can be interpreted in continuous scale.
- Binary: the output varies between two discrete values
 can be interpreted as logic levels.
- Digital: the output quantity can be interpreted in discrete numeric scale.

Some simple examples:

Micro-switch (limit-switch)

binary sensor:
 displacement or force to
 resistance zero/infinite

Potentiometer

NC terminal

NO terminal

analog sensor: angle to resistance

Some simple examples for optical sensors:

Out

GND

Photo-interrupter

Optical rotary encoder

Light intensity sensors

Infrared distance measurement sensor

Sensing and measurement

Semiconductor pressure sensor

Pressure difference causes deformation on the thin Si disc (membrane).

The deformation causes changes in the resistance that can be measured by using the Wheatstone-bridge principle.

Sensing and measurement

Magnetic field sensor

Magnetoresistive effect:

The magnetic field changes the electrical resistance of the permalloy material (an iron alloy).

Measurement: Wheatstone-bridge.

Sensing and measurement

Stain gauge stamp

Application example: weight cell.

Measurement: Wheatstone-bridge. Mechanical deformation (strain):

changes the resistance of a thin conductive layer.

Temperature sensor options:

Binary temperature sensors (thermal switch, thermostat):

- Bimetal switch
- Liquid- or gas-filled bellows switch

Proportional (analog) temperature sensors:

- Resistor Temperature Detector (RTD)
- Thermocouple(TC),
- Thermistor
- Semiconductor based temperature sensors
- Contactless infrared temperature sensors

Binary temperature sensors

Limit switch: if the temperature goes beyond some limit its state of a switch is changed between ON/OFF.

• Bimetal switch

Bimetal strip - rolled by two metal strips with different thermal expansion coefficients: due to different length increases of the two materials it is deflected.

$$\varepsilon = \frac{L(T) - L(T_0)}{L(T_0)} = \alpha(T - T_0)$$
relative length
difference
thermal expansion
coefficient

• Liquid- or gas-filled bellows switch

Temperature dependence of a gas:

 $\frac{pV}{T} = const.$ (unified gas law)

The bellows keeps constant pressure:

$$V(T) - V(T_0) = \frac{k}{p}(T - T_0) \quad L(T) - L(T_0) = \frac{k}{pA}(T - T_0)$$

V = LA

Temperature dependence of the volume of liquids:

relative change of volume

$$\varepsilon_{V} = \frac{V(T) - V(T_{0})}{V(T_{0})} = \gamma(V - V_{0})$$

$$\uparrow$$
Volumetric thermal
expansion coefficient

Resistor Temperature Detector (RTD)

Principle: temperature dependence of the resistance of conductive materials

$$\frac{R(T) - R(T_0)}{R(T_0)} = \alpha (T - T_0) \quad R(T) = R(T_0) (1 + \alpha \Delta T)$$

$$\int_{\text{linear thermal coefficient}} \alpha (T - T_0) \quad R(T) = R(T_0) (1 + \alpha \Delta T)$$

In the reality a nonlinear relationship is valid.

A 2nd order approximation:

$$R(T) = R(T_0) (1 + \alpha \Delta T + \beta (\Delta T)^2)$$

Higher order approximations: by the Taylor-expansion of the function R(T).

RTD: Pt100 - 100 Ω platinum is used most frequently

Standard: DIN IEC 751 Classes - according to tolerance:

> A: ± [(0.15 + 0.002 | t |] °C B: ± [(0.30 + 0.005 | t |] °C

Materials used:

Platinum $0.00385 \Omega/\Omega/^{\circ}C$ -260 - 850 °CCopper $0.00427 \Omega/\Omega/^{\circ}C$ -100 - 260 °CNickel $0.00672 \Omega/\Omega/^{\circ}C$ -100 - 260 °C

19

Characteristics of Pt100 RTD (according to IEC751):

- Nominal resistance at $100^{\circ}C$: 100Ω .
- Linear thermal coefficient α =0.00385 (average between 0 and 100 °C)
- More accurate nonlinear relationship:

 $R(T) = R_0 (1 + a T + bT^2 + c(T - 100)T^3)$

(Callendar-Van Dusen equation)

Pt100 RTD RESISTANCE vs. TEMPERATURE

20

Measurement with RTDs: voltage divider

Excitation by voltage generator:

$$U_0 = U_I \frac{R_{RTD}}{R_S + R_{RTD}} \leftarrow \text{bias}$$

nonlinear

Excitation by current generator

$$U_0 = IR_{RTD}$$
 linear

Excitation by constant current is more advantageous:no bias,

• The resistance of wiring does not affect the result.

RTD measurement: Wheatstone-bridge

One element of the bridge is an RTD, the other ones are resistors with constant values. Output voltage U_0 is measured.

Excitation by voltage generator

Excitation by current generator: it is usually more advantageous.

Thermo Couples (TC)

Thermoelectric (Seebeck) effect: mobility of electrons varies in different metals; this phenomenon results in different electric potential that can be measured - in a junction of different metals thermal voltage occurs.

"Naked'

K-type TC (according IEC 584)

chromel(+) - alumel(-) $41\mu V/^{\circ}C$

chromel: nickel (90%) - chromium (10%) alloy alumel: nickel (95%) - manganum (2%) - aluminium (2%) - silicon (1%) alloy

Thermistors

Resistors made of semiconductor ceramic material with

- NTC negative temperature coefficient
- PTC positive temperature coefficient

NTCs are most frequently used. The principal equation:

$T = \frac{1}{A + B \ln(R) + C [\ln(R)]^3}$

(Steinhart-Hart)

A, B, C are empirical constants (can be found in catalogues)

Measurement:

- voltage divider, or
- Wheatstone-bridge.

Semiconductor temperature measurement ICs, e.g.: LM20

Operating principle: exploits the temperature dependence of the semiconductor PN junction (Si material).

Analog output quasi-linear sensor:

More exact nonlinear expression:

$$T = -1481.96 + \sqrt{2.1962 \cdot 10^6 + \frac{1.8639 - V_0}{3.88 \cdot 10^{-6}}}$$
$$V_0 = (-3.88 \cdot 10^{-6} \cdot T^2) + (-1.15 \cdot 10^2 \cdot T) + 1.86399$$

 $V_0 = -11.69 \, mV / ^{\circ}\text{C} \cdot T + 1.8663 \, V$

Position and attitude sensing

Position and attitude in an inertial system are relative quantities.

Absolute quantities :

- Accelerations of translations $-a_x$, a_y , a_z
- Angular rates of rotation $-\omega_x, \omega_y, \omega_z$

Position, velocity and orientation angles are given:

$$\mathbf{s}(\mathbf{t}) = s_0 + \mathbf{v}_0 t + \int_{t_0}^t \int_{t_0}^t \mathbf{a}(\tau) d\tau \qquad \mathbf{v}(\mathbf{t}) = \mathbf{v}_0 + \int_{t_0}^t \mathbf{a}(\tau) d\tau \qquad \varphi(\mathbf{t}) = \varphi_0 + \int_{t_0}^t \omega(\tau) d\tau$$

• Indefinite parameters are present in the equations.

• Their derivation can be realized with cumulative error.

The means of sensing the orientation and the rotation of the objects; they realise angle or angular rate measurements.

Types according to the physical principle used:

- Mechanical (rotating) gyroscope
- Vibrating mechanical gyroscope
- Laser gyroscope

Mechanical rotating gyroscopes

Physical principles: • Newton axioms

• The impulse retention law

The rotating angle of a rotating rigid body is in stable equilibrium, i.e. it retains its position.

What does it mean? Is it standing? - No:

It rotates around a given direction along a cone - this is the phenomenon of precession.

Mechanical rotating gyroscopes

$$\tau = \frac{dL}{dt} = \frac{d(\Theta\omega)}{dt} = \Theta\beta$$

Precession:

 A torque perpendicular to the rotations axis occurs

$$\tau_p = \omega_p \times L$$

- Coriolis force coming from the rotation of the Earth
- Friction effects
- Random effects (small deflections in the geometry, and external forces)

History of gyroscopes

Johann Bohnenberger University of Tübingen (1817)

- An experimental means for illustrating the spatial rotation of rigid bodies
- All the characteristics of a modern gyroscope are present

Ancient history of gyroscopes

Byzantine Philo (i.e. 280-220) - non-overturning ink pot

Ancient finding from Philippi (i.e. 350-250) - a sun-dial (watch) (from cc. 1230)

Gerolamo Cardano (1501-1576) cardan-suspension for coaches 31

History of gyroscopes

Léon Foucault École Polytechnique, Paris, 1852 It has been constructed by suggestion of **Pierre-Simon Laplace** for the purpose of demonstrating the rotation of the Earth

The name "gyroscope" is originated from Foucault.

Mechanical gyrocompass

Hollandia, 1885

Rotating by an electric motor

M.G. van den Bos,

- High viscosity liquid filling for the attenuation
- Automatic setting in the geographical North (principle: the toque generated by the Coriolis force is 0 in this position).
- A product manufactured in high volumes.
- Many patents and priority dispute is connected with the invention.

... now in a practical application

Mechanical gyrocompass

Sperry gyrocompass

- Higher reliability than that of the magnetic compass
- Points to the geograpgical North(→ magnetic North differs from it - declination)
- It is widely used in marine ships
- Disadvantages: slow set-up, slow tracking of changes

Today:

- Laser gyrocompass
- GPS

is used instead.

Gyroscopes in aerospace

Applications:

- Stabilising the motion of the air/space craft
- Controlling manoeuvres
- Navigation

Means:

- 1-axis gyroscopes
- 2-axis gyroscopes
- 3-axis gyroscopes
- "Gimbal lock" problem: 4th axis is needed
- Inertial Navigation Systems

Function:

• Detection deflection from one direction

Application:

- Stabilizing vehicle yaw motion
- Steering control

Example:

Honeywell JG7005 autopilot gyroscope, years 1950 A binary output device: in a deflection contacts are set ON or OFF

Function:

2D position tracking

Application:

- 2D attitude detection (artificial horizon)
- 2D position control

Example:

Honeywell JG7044N, years 1950

Boeing 747 Sperry vertical gyroscope

years 1970

Function:

3-dimensional positioning

Application:

• 3D path tracking control

Example:

Inertial module an the S3 ballistic missile, 1966

... from the early space missions (Kennedy Space Center)

The "gimbal lock" problem

If the gyroscope does not detect the motion of the vehicle along one or more degree of freedom, a "lock" phenomenon occurs - the gyroscope looses one or more degrees of freedom.

When does this happen?

If two axes of rotation of a gyroscope fall in one plane.

Why is it called "gimbal lock"?

It only falls with a ring (gimbal) gyroscope.

The "gimbal lock" problem

Normal state.

X and Z axes of rotation coincide: **gimbal lock** - "roll" motion cannot be detected.

The "gimbal lock" problem

A notable case: during the Moon mission of Apollo 11 almost caused problem the gimbal lock - at angle 85° the on-board computer intervened erroneously, however the crew noticed the error and corrected it by restarting the IMU.

"How about sending me a fourth gimbal for Christmas?" - Mike Collins

Elimination of the gimbal lock phenomenon:

- Let's use a 4th redundant gimbal.
- Observe the critical condition and restart the gyroscope from a new position.
- Do not use rotating mechanical gyroscope.

The notable gyroscope

©2000 Bruce M. Yarbro & The Smithsonian Institution

Vibrating mechanical gyroscope

Principle: a vibrating flexible rod

in the case of rotation wit circular frequency $\boldsymbol{\omega}$

 F_c Coriolis force $F_c = -m(\omega \times v_r L)$

Causes deformation perpendicularly to the forced vibration \rightarrow measurable

Rezgőelemes giroszkóp

Megvalósítások:

Az alkalmazott technológia szerint:

- Piezokeramikus kristály
- MEMS Micro ElectroMechanical System

A mérés elve szerint:

- Piezoelektromos hatás
- Kapacitív elvű elmozdulás-mérés

Vibrating mechanical gyroscope

Piezoceramic crystal

Piezoelectric effect:

As a consequence of a deformation electric voltage appears in the opposite surfaces of the crystal.

Polarization

Polarisation: the opposing charges are separating.

Ceramics Bimorph vibrator

MEMS - Micro ElectroMechanical System

Fabrication a microscopic mechanicals system on a silicon wafer.

Typical MEMS circuits:

- Optical devices, i.e. adaptive mirror system (DLP)
- Sensors: acceleration, angular rate, pressure, etc.
- Micromotors and drives

MEMS giroszkóp

A rezgő elem: szilíciumból kialakított rugalmas tartószerkezet.

Elektrosztatikus mozgatás - kapacitív elvű elmozdulás mérés.

MEMS gyroscopes

Advantages:

- Small sizes example: 4 x 4 x 1 mm
- Mechanical stability an robustness
- High reliability, small fault rate
- Small consumption
- No "gimbal lock"

Disadvantages:

- Circuit noise
- Temperature

dependence

Feature:

 Angular rate measurement: deriving orientation (angles) needs integration

MEMS gyroscope

Analog Devices

- Range ±150°/s
- Sensitivity 12.5mV/°/s
- Temperature drift 3%
- Noise 0.04 °/s//Hz
- Bandwidth 3kHz
- 6.85 x 6.85 x 3,8 mm

ADXRS-613 - 1-axis angular rate sensor

MEMS gyroscope

STM L3GD20H 3-axis digital output angular rate sensor

LGA-16 case 3x3x1 mm

- I²C/SPI digital interface
- 11.9 757.6 Hz data rate
- ±245/500/2000 °/s range
- Temperature drift ±2%
- Noise 0.011 °/s/JHz
- Linearity 0.2%

Physical principle:

The Sagnac effect

Georges Sagnac (1869-1928) French physicist

- Two opposite light beams ellentétes shows interference depending on the phase-difference.
- If the system is rotating with some angular rate, phase difference is affected, hence interference changes.

Sagnac interferometer

Possible measurement method: detecting the alteration of interference peaks — by the means of camera sensor.

Types:

- Ring Laser Gyroscope (RLG)
- Fiber Optic Gyroscope (FOG)

Advantages:

- High accuracy and sensitivity
- Extremely small noise

Disadvantages:

• Quite expensive

• Ring Laser Gyroscope (RLG)

• Fiber Optic Gyroscope (FOG)

Acceleration sensors

Physical principle: spring - mass

- Piezo-ceramic
 Sensing by piezoelectric effect
- MEMS
 - Sensing by
 - capacitive

effect.

thermal

MEMS accelerometers

MEMS accelerometers

Advantages:

- Small sizes 4 x 4 x 1.5 mm (3-axis)
- Immunity on environmental effects
- High reliability, low failure rate
- Low consumption
- Simple handling
- Low price

Disadvantages:

- Electrical noise
- Temperature dependence

Feature:

 Acceleration sensing: deriving position needs 2 integrations

MEMS gyorsulás érzékelők

Analog Devices ADXL-330 - háromtengelyű gyorsulásérzékelő

- Méréshatár ±3g
- Érzékenység 300mV/g
- Linearitás ±0.3%
- Hőmérsékleti drift 1mg/ °C
- Zaj 300 µg/√Hz
- Sávszélesség 1.6kHz
- Méret 4 x 4 x 1.45 mm
- Ár < 10\$

MEMS gyorsulás érzékelők

STM LIS331 háromtengelyű digitális kimenetű gyorsulás érzékelő

- Méréshatár ±2/4/8g
- I²C/SPI digitális interfész (12 bit)
- 50/100/400/1000 H: data rate
- Érzékenység 1-3.9 mg/LSB
- Hőmérsékleti drift 0.01%/°C
- Zaj 218 µg/√Hz
- Méret 3 x 3 x 1 mm

Magnetic field sensing

Magnetoresistive effect:

Magnetic field alters the electric resistance of the permalloy material (an iron alloy).

Hall effect:

Electrons moving in magnetic field are effected by the Lorentz force, resulting in potential difference.

Measurement: Wheatstone-bridge.

Magnetic compass

Honeywell 3-axis digital compass HMC5843

4 x 4 x 1.3 mm case Digital interface Automatic demagnetization

Magnetic compass

Problems:

- Disturbing magnetic effects in the environment ferromagnetic objects, electric currents
- Remanent magnetization effects in the sensor
- Difference on the direction of the magnetic and geographic North inclination
- Inhomogeneity in Earth magnetic field declination

Units (Declination) : degree Contour Interval : 5 degree:

• Correction: declination maps, databases, applications.

Inertial Measurement Units (IMU)

IMU - Inertial Measurement Unit

- Gyroscopes and magnetometers, and other sensors with common control and processing
- Minimal requirements: measurement, ADC, preprocessing, filtering, scaling, calibration, error correction
- High end: deriving velocity, position, and orientation (Euler-angles, quaternions).

Contemporary realizations:

- Digital processing
- Applying embedded microcomputers.

Inertial Measurement Units (IMU)

Bosch Sensortec BNO055 inertial sensor

In a single silicon wafer:

- 3-axis 14-bit digital output accelerometer
- 3-axis 16-bit digital digital output angular rate sensor
- 3-axis Earth magnetic field sensor
- 32-bit ARM Cortex M0+ microcontroller with Bosch Sensortec sensor fusion software.

Extensions:

- Host microcontroller high level digital signal processing, GPS fusion, Kalman filtering
- Communication CAN / USB / Ethernet

Global Positioning System- GNSS

Space segment

From satellites

L1 carrier signals - time pulses - ephemeris

satellite health
 date, time

- almanac

- GPS (USA)
- GLONASS (RU)
- Galileo (EU)
- BeiDou (China)
- IRNSS (India)

Limited accuracy

Problems: • Noises, uncertainties

• Reliability, availability

established ephemeris calculated almanacs satellite health

From the ground

time corrections

station

GNSS-INS positioning system

BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS

Dr. Soumelidis Alexandros

email: soumelidis@sztaki.mta.hu

BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG