

Environment Sensing

Lecture 6

Environment Representation and Static Occupancy Grid Maps Dr. Tamás Bécsi

Introduction

Budapesti Műszaki és Gazdaságtudományi Egyetem 🛶 🛶

mérnöki és Járműmérnöki Kar Közlekedés- és Járműirányítási Tanszék 🗨

- One of the key challenges of any (AD) system lies in the perception and representation of the driving environment
- Semantical/Cognitive representation of the world is hard
- Environment representation is the buzzword version of mapping (in our scope). Since mapping can be either spatial or temporal, dynamic or static.

The "ideal" environment representation

Budapesti Műszaki és Gazdaságtudományi Egyetem

- **Provides all information** necessary for implementing any ADAS or AD function
- Compact enough for transmission between electronic control units or V2V/V2I communication interfaces
- Is generable real-time in a computationally inexpensive, robust way with respect to sensor errors/malfunctions
- Suppress irrelevant environment details to facilitate situation interpretation and planning approaches
- Represent free space explicitly to permit safety-related trajectory planning
- Is able to handle **static and dynamic** objects
- Allow to incorporate **uncertainties**

Mapping is pre-computation

Közlekedés- és Járműiránvítási

Budapesti Műszaki és Gazdaságtudományi Egyetem

- From the point of view of self-driving technology, the mapping operation includes everything we can do to pre-compute things before the AV starts driving.
- Perception and localization of static objects in the world such as roads, intersections, street signs, etc.
 can be solved offline and in a highly accurate manner.
- Without it, the AD/ADAS function has to figure out the whole background at the instant

Mapping improves safety

Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki és Járműmérnöki Kar

- The use of maps for navigation is OK
- Though maps could adopt pragmatic best practices that reduce risk during driving
 - E.g. providing not only speed limits, but speed profiles
 - The vehicle can precondition itself for situations

Map is a unique sensor

Budapesti Műszaki és Gazdaságtudományi Egyetem

- Has no range limitations
- It is immune to runtime occlusion from dynamic objects
- Can also be used for sensor fusion

Map can be a global shared state

Budapesti Műszaki és Gazdaságtudományi Egyetem

- Just as any other Cloud service.
- Like a large full-information MMO game

Hierarchical approach

Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki és Járműmérnöki Kar

HD maps

Budapesti Műszaki és Gazdaságtudományi Egyetem 🛥 🛶

Közlekedésmérnöki és Járműmérnöki Kar Közlekedés- és Járműirányítási Tanszék

- Many participants,
- Not this course...
 - Localization and mapping
 - ADAS
 - etc...

- HERE
- DeepMap
- Civil Maps
- Carmera
- TomTom
- IvI5
- Baidu

Feature, Volumetric, Semantic

Feature Maps vs Grid Maps

Budapesti Műszaki és Gazdaságtudományi Egyetem

edésmérnőki és Járműmérnőki Kar Közlekedés- és Járműirányítási Tanszék

- Natural choice for Kalman filter-based SLAM systems
- Compact representation
- Multiple feature observations improve the position estimate (EKF)

- Discretize the world into cells
- Grid structure is rigid
- Each cell is assumed to be occupied or free space
- Non-parametric model
- Require substantial memory resources
- Does not rely on a feature detector

Grid maps basics

Budapesti Műszaki és Gazdaságtudományi Egyetem

- The area is simplified to 2D space,
- With equidistant grid,
- And each grid cell is a binary random variable, that models occupancy
 - Occupied: $p(m_j)=1$
 - Unoccupied: p(m_i)=0
 - Unknown: $p(m_j)=0.5$
- The grid is assumed to be static
- All cells have independent probability

Basics recap

Budapesti Műszaki és Gazdaságtudományi Egyetem 🛥 🚥

mérnöki és Járműmérnöki Kar Kar Közlekedés- és Járműirányítási Tanszék 🗨

- m the map, p(m) assumption
- m_i one cell in the map, p(m_i) assumption
 - $p(m) = \prod p(m_i)$
- z_t measurement in step t
- $z_{1:t} = \{z_1, z_2 \dots z_t\}$ set of measurements from step 1 to t
- All measurement are independent!
 - $p(z_2) = p(z_2|z_1)$ the current measurement is independent for all previous: $p(z_t) = p(z_t|z_{1:t-1})$
- x_t the state of the sensor in step t

The sensor model of a proximity sensor

Budapesti Műszaki és Gazdaságtudományi Egyetem

Közlekedés- és Járműnérnöki Kar 🖉

- The Sensor model states that
 - given a map m (actually the reality)
 - and a sensor state x_t

given scenario?

what is the probability function of the measurement?

• Simply: What is the sensor output in a

 $p(z_t|x_t,m)$

The inverse sensor model of a proximity sensor

Budapesti Műszaki és Gazdaságtudományi Egyetem

smérnöki és Járműmérnöki Kar Közlekedés- és Járműirányítási Tanszék 🗨

- The Inverse Sensor model
 states that
 - given a measurement z_t
 - and a sensor state x_t
 - what is the probability function for the map cell m_i ?

$$p(m_i|z_t, x_t)$$

• Simply: What is the sensor output in a given scenario?

Mapping, "Naive" Approach 1.

Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki és Járműmérnök

- The sensor model for mapping is considered deterministic, with minimal noise on measurement
- The inverse sensor model states, that the sensor output has small deviation from the actual distance of the closest object.

Mapping, Naive Approach 2.

Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki és Járműmérnöki Kar

- Without any probabilistic approach,
- 1. Initialize Map with unknown state for each cell (0.5)
- 2. Update each map cell \boldsymbol{m}_{j} with its corresponding measurement \boldsymbol{z}_{j} by following the rule:

Demo

Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki és Járműmérnöki Kar

Demonstration Videos

Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki és Járműmérnöki Kar

Közlekedés- és Járműirányítási Tanszék

1. Ideal Sensor

2. What if, we have Gaussian noise on the sensor?

. . .

And more...

The Problem with the Naive approach

(özlekedés jás lárműirányítási Tanszál

Budapesti Műszaki és Gazdaságtudományi Egyetem

- Beams reflected by obstacles
- Beams reflected by persons / caused by crosstalk
- Random measurements
- Maximum range
 measurements

Sensor errors

Sensor Errors

Budapesti Műszaki és Gazdaságtudományi Egyetem

Közlekedésmérnöki és Járműmérnöki Kar Közlekedés- és Járműirányítási Tanszék

Random measurement

Z_{max}

 Z_{small}

Resulting Mixture Density/Sensor modell

Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki és Járműmérnöki Kar,

$$P(z \mid x, m) = \begin{pmatrix} \alpha_{\text{hit}} \\ \alpha_{\text{unexp}} \\ \alpha_{\text{max}} \\ \alpha_{\text{rand}} \end{pmatrix}^{T} \cdot \begin{pmatrix} P_{\text{hit}}(z \mid x, m) \\ P_{\text{unexp}}(z \mid x, m) \\ P_{\text{max}}(z \mid x, m) \\ P_{\text{rand}}(z \mid x, m) \end{pmatrix}$$

Demonstration Video

Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki és Járműmérnöki Kar

Közlekedés- és Járműirányítási Tanszék

• With complex sensor error scheme

Determine model

Közlekedésmérnöki és Járműmérnöki Kar Közlekedés- és Járműiránvítási Tanszék

Probabilistic grid mapping

Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki és Járműmérnöki Kar

Probabilistic grid mapping 1.

Budapesti Műszaki és Gazdaságtudományi Egyetem

Közlekedés- és Járműirányítási Tanszék

We want to determine the map m, based on all previous sensor states and measurements. Actually(1), since all cells are independent, we write the term for one cell:

$$p(m_i|z_{1:t}, x_{1:t}) = \frac{p(z_t|m_i, z_{1:t-1}, x_{1:t})p(m_i|z_{1:t-1}, x_{1:t})}{p(z_t|z_{1:t-1}, x_{1:t})}, by applying the Bayes Rule$$

Actually(2), since we won't do anything with the sensor position mathematically, we omit it to make things clearer:

$$p(m_i|z_{1:t}) = \frac{p(z_t|m_i, z_{1:t-1})p(m_i|z_{1:t-1})}{p(z_t|z_{1:t-1})}$$

Estimating a Map From Data

Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki és Járműmérnöki Kar

큆

$$p(m_{i}|z_{1:t}) = \frac{p(z_{t}|m_{i}, z_{1:t-1})p(m_{i}|z_{1:t-1})}{p(z_{t}|z_{1:t-1})} \quad \text{the measurements} \\ \text{are independent} \\ p(z_{t}|z_{1:t-1}) = p(z_{t}) \\ p(m_{i}|z_{1:t}) = \frac{p(z_{t}|m_{i})(m_{i}|z_{1:t-1})}{p(z_{t})} \quad \text{another Bayes on} \\ p(m_{i}|z_{1:t}) = \frac{p(m_{i}|z_{t})p(z_{t})(m_{i}|z_{1:t-1})}{p(m_{i})p(z_{t})} \quad \text{simplify by } p(z_{t}) \\ p(m_{i}|z_{1:t}) = \frac{p(m_{i}|z_{t})p(m_{i}|z_{1:t-1})}{p(m_{i})p(z_{t})} = \frac{p(m_{i}|z_{t})p(m_{i}|z_{1:t-1})}{p(m_{i})}$$

Estimating a Map From Data

Budapesti Műszaki és Gazdaságtudományi Egyetem

smérnöki és Járműmérnöki Kar Közlekedés- és Járműirányítási Tanszék

Map Based on all previous Current Measurement (From inverse sensor model) measurements (Making the algorithm sequential) $p(m_i|z_t)p(m_i|z_{1:t-1})$ $p(m_i | z_{1:t}) =$ $p(m_i)$ Prior assumption on the map (generally 0.5)

Static State Binary Bayes Filter – Though multiplication causes some problems

Further improvement

Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki és Járműmérnöki Kar

Közlekedés- és Járműirányítási Tanszék

$$p(\neg m | z_{1:t}) = \frac{p(\neg m | z_t) p(\neg m | z_{1:t-1})}{p(\neg m)}$$

• Ratio off probabilities:

$$\frac{p(m|z_{1:t})}{p(\neg m|z_{1:t})} = \frac{p(m|z_{1:t})}{1 - p(m|z_{1:t})} = \frac{p(m|z_t)}{1 - p(m|z_t)} \frac{p(m|z_{1:t-1})}{1 - p(m|z_{1:t-1})} \frac{1 - p(m)}{p(m)}$$
Measurement Recursion Prior

Using log odds notation

```
Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki és Járműmérnöki Kar
```

Közlekedés- és Járműirányítási Tanszék

$$l(x) = \log \frac{p(x)}{1 - p(x)};$$
$$p(x) = 1 - \frac{1}{1 + \exp(l(x))}$$

$$l(m|z_{1:t}) = l(m|z_t) + l(m|z_{1:t-1}) - l(m)$$

$$l_t = inverse.sensor.model + l_{t-1} - l_0$$

Demonstration video

Summary

Budapesti Műszaki és Gazdaságtudományi Egyetem 🛥 🚥

smérnöki és Járműmérnöki Kar Közlekedés- és Járműirányítási Tanszék

- Occupancy grid maps discretize the space into Independent cells
- Each cell is a binary random variable estimating if the cell is occupied
- Static state binary Bayes filter per cell
- Mapping with known poses is easy
- Log odds model is fast to compute
- No need for predefined features

Közlekedésmérnöki és Járműmérnöki Kar Közlekedés- és Járműirányítási Tanszék

- "Known" poses is questionable
- Short term quasi-known poses are OK
- wide-angle sensors are still a problem, with biased measurements
- "independent cell" <-> "independent measurement" assumption makes it weaker

References

Budapesti Műszaki és Gazdaságtudományi Egyetem

Közlekedésmérnöki és Járműmérnöki Kar Közlekedés- és Járműirányítási Tanszék

- Rethinking Maps for Self-Driving, Medium online: https://medium.com/@LyftLevel5/https-medium-com-lyftlevel5-rethinking-maps-for-self-driving-a147c24758d6
- SCHREIER, Matthias. Environment representations for automated on-road vehicles. at-Automatisierungstechnik, 2018, 66.2: 107-118.
- Sebastian THRUN, Wolfram BURGARD, Dieter FOX: PROBABILISTIC ROBOTICS Chapters 4.2; 6; 9.1-2
- Robot Mapping http://ais.informatik.uni-freiburg.de/teaching/ws18/mapping/
- Mitsui & Co. Global Strategic Studies Institute Monthly Report July 2018:DEVELOPMENT OF DYNAMIC MAP FOR AUTOMATED DRIVING AND ITS POTENTIAL TO BE NEXT-GEN INDUSTRIAL INFRASTRUCTURE