

Automotive Environment Sensors

Lecture 1. Introduction (Teaser Trailer) Dr. Szilárd Aradi Dr. Tamás Bécsi Olivér Törő

Preface

Budapesti Műszaki és Gazdaságtudományi Egyetem

Közlekedés- és Járműirányítási Tanszék

"Autonomous driving is the simplest engineering task*

*On a newly built German highway, at 12am when the sun shines from above, in summer at approx. 20 °C and 10% humidity..." (Unknown sensor-fusion engineer at Robert Bosch)

Course Information

Lecturers: Szilárd Aradi (St106) Tamás Bécsi (St106) Olivér Törő (St105)

Credit: 5

- 2 hrs. lecture/week St321B (here)
- 2 hrs. lab. /week St121-122 (!!!)
- 2 midterm exams (Week 7 and 14)

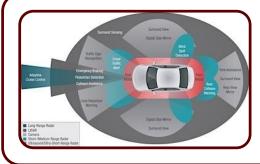
Assessment type: exam

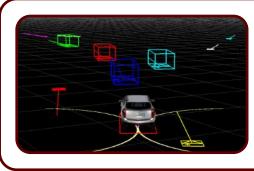
Grade:

 $0.25^{*}(midterm_{1}+midterm_{2})+0.5^{*}exam$

Literature: Thrun, Sebastian, Wolfram Burgard, and Dieter Fox. *Probabilistic robotics*. MIT press, 2005.

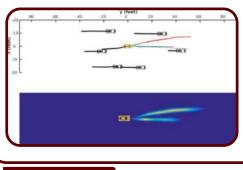
Connected Courses on AVCE:


- Control theory and system dynamics
- Vehicle dynamics
- Autonomous robots and vehicles
- Localization and mapping
- Computer Vision Systems
- Machine vision
- etc...


Layered approach for the environment perception framework

Budapesti Műszaki és Gazdaságtudományi Egyetem

Közlekedés- és Járműirányítási Tanszék



- Vehicular Sensors, providing original data
- Vision, Radar, Lidar, Ultrasonic
- Appearance, Motion, Disparity, Distance, Shape etc.

Vehicle and Object Detection (and tracking)

- Sensor Fusion, Data association, Topology and roadside objects etc.
- Vehicle model, dynamics, filtering etc.

Situation understanding

- Behavior models, maneuvers' classification and prediction
- Probabilistic future modeling

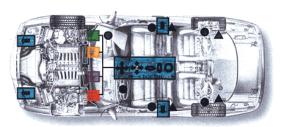
(Environment) Sensors

Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki és Járműmérnöki Kar Közlekedés- és Járműirányítási Tanszék Közlek


Ultrasonic

GPS and Maps

Chassis


Camera (+infra)

Lidar

Radar

Purpose of environment sensing

Budapesti Műszaki és Gazdaságtudományi Egyetem

Közlekedésmérnöki és Járműmérnöki Kar Közlekedés- és Járműirányítási Tanszék Közlekedés- és Járműirányítási Tanszék

- Detecting static and dynamic objects
 - Relative Positions
 - Relative Speed
 - Classification
 - 0,5-250 m range
 - Changing environment(lights, humidity, dust)
 - Multiple types of objects (material, color, shape)
- Challenging

A Slight Remark on ASIL

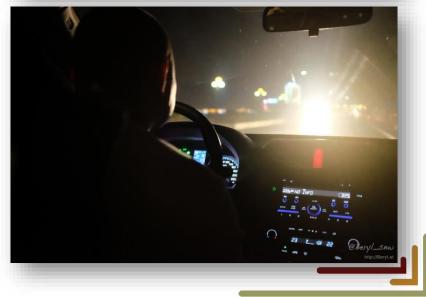
Budapesti Műszaki és Gazdaságtudományi Egyetem

Közlekedésmérnöki és Járműmérnöki Kar Közlekedés- és Járműirányítási Tanszék (

- ASIL Automotive Safety Integrity Level
- Safety Integrity Level used in IEC 61508
- ISO 26262 Functional Safety for Road Vehicles standard
- Risk=f(Severity, Likelyhood, Controllability)

 More to come in "Safety and Reliability in the Vehicle Industry"

- Severity (S): S0 No Injuries ... S3 Life-threatening
- Exposure (E): E0 Incredibly unlikely
 - ... E4 High probability
- **Controllability (C):** C0 Controllable in general
 - C3 Uncontrollable

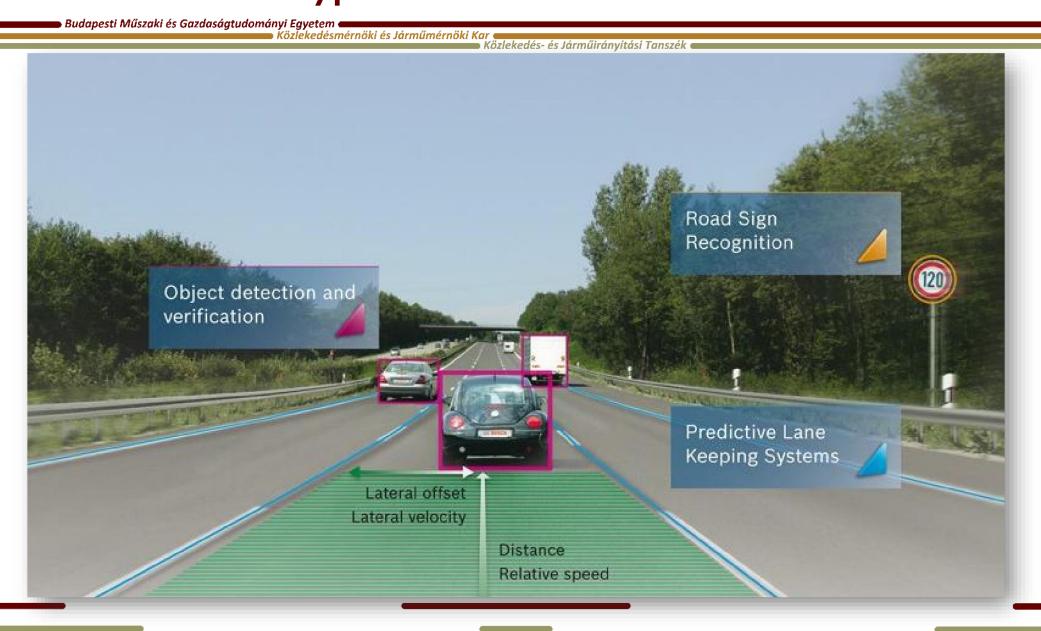

Increasing the Level of Automation

Budapesti Műszaki és Gazdaságtudományi Egyetem

Közlekedés- és Járműirányítási Tanszék 📹

- Solely Camera based systems?
 - Based on human driving, could be feasible
 - Road traffic is the most dangerous form of transportation, most accident is caused by human error.
 - An automated system need to provide higher safety level.
- Improvement: Sensor fusion
 - All parts of the environment are surveilled by multiple sensors.
 - Redundant
 - Confidence
 - Can eliminate the weaknesses of each sensor
 - High and low level fusion

Camera


Budapesti Műszaki és Gazdaságtudományi Egyetem

esmernöki és Jarmumernöki Kar Közlekedés- és Járműirányítási Tanszék

- Most important sensor of the ADAS systems. (Some say)
- Functions
 - Lane detection
 - Lane departure warning
 - Lane following
 - Lane change
 - Object detection, classification and tracking
 - Adaptive Cruise Control
 - Collision avoidance and warning systems
 - Road sign and traffic light detection
 - Warning systems
 - Cruise control
 - Energy optimization

- Parking
- Night vision
- Pros
 - Detailed information on the environment
 - Shape and colour detection
- Cons
 - Sensible to lighting and dust conditions
 - Depth of field detection with mono camera is a challenge
 - High computational needs

Typical camera functions

Radar

Budapesti Műszaki és Gazdaságtudományi Egyetem

Közlekedés- és Járműirányítási Tanszék

- Another important sensor for ADAS
- Functions
 - Object detection and classification
 - Adaptive cruise control
 - Collision warning and avoidance
- Pros
 - Low sensibility to weather conditions, not sensible to light
 - For safety critical applications
 - Small size and low price
- Cons
 - Object classification is hard
 - Reflections can cause disturbance

Forrás: Mathworks. Inc.

Radar Object Tracking Example

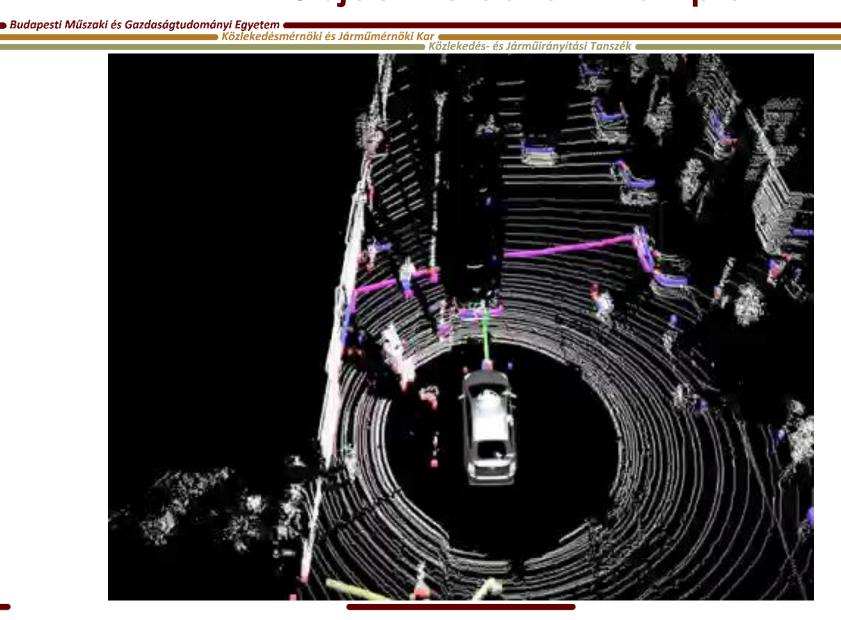
Ultrasonic

Budapesti Műszaki és Gazdaságtudományi Egyetem

Közlekedés- és Járműirányítási Tanszék 🕻

- Primarily for comfort functions. New systems are eligible for safety critical functions
- Functions
 - Automated Parking systems
 - Parking spot finder
 - Parking
 - Blind Spot warning*
 - Low speed cruise control
 - Traffic jam assist
- Pros
 - Cheapest
 - Eligible for safety functions
- Cons
 - Low range
 - Sensitive to dust
 - Low speed
 - Accurate localization is a challenge

UltraSonic Mapping



LIDAR

Közlekedés- és Járműirányítási Tanszék 🗨

- Laser scanning for distance, 2D or 3D point cloud.
- Functions
 - Reference measurements
 - Object detection and classification
 - Lane detection
 - Road state
- Pros
 - Accurate high resolution measurement
 - Low sensibility to weather
- Cons
 - Expensive
 - Light absorbing materials cause problem
 - Mirrors cause problem

LIDAR Object Detection Example

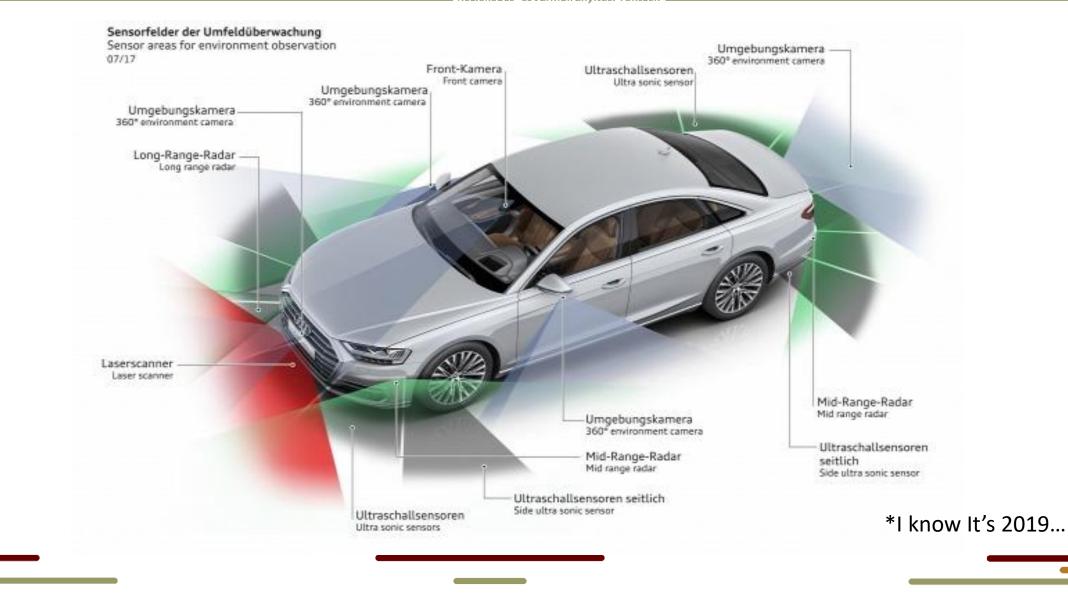
Commercial solutions

Sensor Type	Vision	Infrared / Thermal	Long Range Radar	Short / Mid Range Radar	Lida
Application		mermu	7681MHz	2426 / 7681 GHz	
Adaptive Front Lighting (AFL), Traffic Sign Recognition (TSR)	х				
Night vision (NV)	х	x			
Adaptive Cruise Control (ACC)	х		Х	x	Х
Lane Departure Warning (LDW)	х				
Low-Speed ACC, Emergency Brake Assist (EBA), Lane Keep Support (LKS)	х			x	х
Pedestrian detection	х	х		x	
Blind Spot Detection (BSD), Rear Collision Warning (RCW), Lane Change Assist (LCA)	X			X	Х
Park Assist (PA)	x			X	Х
Camera monitor systems (CMS)	x				

Trends

Budapesti Műszaki és Gazdaságtudományi Egyetem

Közlekedésmérnöki és Járműmérnöki Kar Közlekedés- és Járműirányítási Tanszék


- All sensor type will give 360 degree info
 - Different radar ranges
 - different view angle cameras
- 3D Lidars instead of 2D
 - Still expensive (1000s USD)
 - 100 USD is a desired price

Example: Audi A8 2018*

Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki és Járműmérnöki Kar köz

Közlekedés- és Járműirányítási Tanszék

Google Waymo

Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki és Járműmérnöki Kar


Közlekedés- és Járműirányítási Tanszék

HOW WAYMO'S SELF-DRIVING CAR WORKS One of Waymo's three lidar systems that shoots lasers A forward facing camera works with 8 so the car can see its surroundings. Waymo says this others stationed around the car to provide lidar can detect a helmet two-football fields away. 360 degrees of vision. Radar sensors can detect objects Waymo's self-driving sensors are tightly integrated into the hybrid minivan created in rain, fog, or snow. by Fiat Chrysler. WAYMO

SOURCE: Waymo

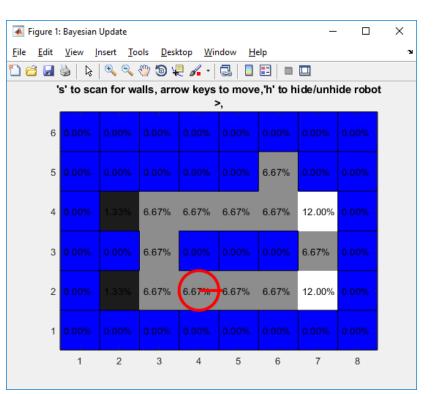
BUSINESS INSIDER

System Uncertainty Trade-off

Numerical complexity

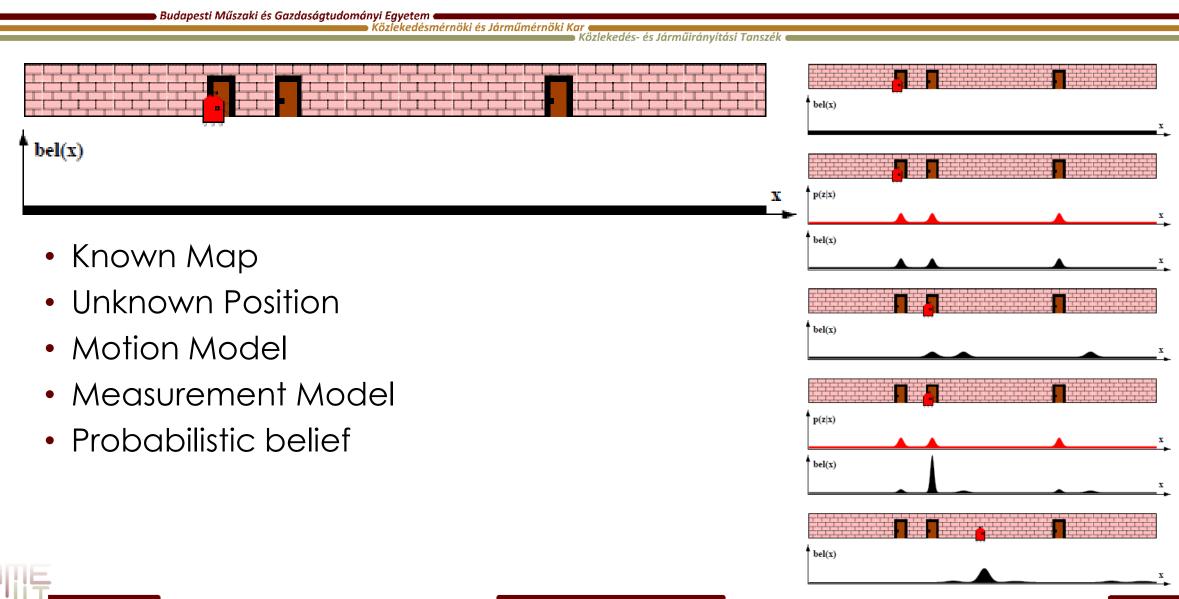
Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki és Járműmérnöki Kar

Közlekedés- és Járműirányítási Tanszék



Simple Robot (with Bayes rule) Example

Budapesti Műszaki és Gazdaságtudományi Egyetem


Közlekedés- és Járműnemoki Kar kelekedés- és Járműirányítási Tanszék e

- Localization
- Unit-size robot in
- A grid world
- Five actions: {left,up,right,down,scan}
- The robot actuators are inaccurate
 - probStraight = 0.8; % Probability of going in the desired direction
 - profOffby90Deg = 0.1; % Probability of going in an other direction
- Robot Sensors are also inaccurate
 - sTruePositive = 0.8; % probability scanner detects wall if there is a wall
 - sTrueNegative = 0.6; % probability scanner detects no wall if no wall

Copyright (c) 2015, Aaron T. Becker

Markov Localization (Continuous Space)

Course Roadmap

	Budar	pesti Műszaki és Gazdaságtudományi Egyetem esti Műszaki és Járműmérnöki Kar	
Week		Lecture	ekedés- és Járműirányítási Tanszék Lab (Matlab exercises)
2019.02.06	1	Introduction	A humble engineers guide to computational complexity (and also the answer to whe the World will end)
2019.02.13	2	Introduction to probabilistics	Particle Filter Localization
2019.02.20	3	Localization and Bayes Filtering	Bayes-KF estimation
2019.02.27	4	State Estimation, Kalman Filters, EKF	Various KF/EKF object tracking/state estimation examples
2019.03.06	5	SLAM	EKF SLAM problem
2019.03.13	6	Behavior	TBD
2019.03.20		Spring Break	
<mark>2019.03.27</mark>	7	Exam week	
2019.04.03	8	Sensors Basics	TBD
2019.04.10	9	Faculty profession day	
2019.04.17	10	Radar	FMCW example
2019.04.24	11	Ultrasonic/Lidar	Probabilistic Grid Mapping
2019.05.01	12	International Labor Day	
2019.05.08	13	AI applications – connection to other topics	Scan matching
<mark>2019.05.15</mark>	14	Exam week	

Π

....