```
clear; close all; clc
set(0,'DefaultFigureWindowStyle','docked')
```


Monte Carlo integration

Approximate the area (volume) of a region without analitically integrating it

Area of circle (π)

First start with a well known shape, the circle
For visualizing the probleme let us draw a circle with a bouinding square

```
% Radius
R = 1;
% Angular variable
t = 0:0.01:2*pi;
x = R * cos(t);
y = R * sin(t);
figure(1)
hold on; box on; axis equal
plot(x,y)
rectangle('Position',[-1,-1,2,2])
xlim([-R,R]*1.3)
ylim([-R,R]*1.3)
```

Throw random points onto this square

```
n = 1e3;
%p = zeros(2,n);
p = rand(2,n) * 2 * R - R;
plot(p(1,:),p(2,:),'k.')
```


Count the points that lie in the circle

```
c = 0;
for i = 1:n
    % Check if vector is longer than the radius
    if sqrt(p(1,i)^2+p(2,i)^2) < R
        c = c + 1;
        end
end
C
```

 c \(=782\)
 \% Faster solution of counting
\% Root sum of squares: that is length of a vector: rssq(p)
\% The indices of the points that are inside the circle rssq(p)<R
$c=\operatorname{sum}(r \operatorname{ssq}(p)<R)$
$c=782$
\% The area is the square's area times the fraction of points inside the circle area $=4 * R^{\wedge} 2 * \mathrm{c} / \mathrm{n}$

```
area = 3.1280
```

\% Realtive error

```
area / (R^2*pi) - 1
```

ans $=-0.0043$

Area under a function (integration)

Monte Carlo sampling

Approximate a function with particles. Particles are weighted samples taken from the function.
Let the function be $f(x)=\operatorname{sinc}(x)$
$\operatorname{sinc}(x)= \begin{cases}\frac{\sin (x)}{x} & x \neq 0 \\ 1 & x=0\end{cases}$
Plot the function

```
% Range
xmin = -5;
xmax = 5;
x = xmin : 0.01 : xmax;
y = sinc(x);
figure(2)
plot(x,y,'b')
hold on
```

Approximate this function with particles
Sample the function in the interval that we are interested in

```
% Number of samples
n = 100;
% Sampling points
s = rand(1,n) * (xmax - xmin) + xmin;
% The samples
z = sinc(s)
    z = 1\times100
    -0.0158 0.0685 0.1250 0.9775 0.4722 -0.0783 0.0333 -0.0535\cdots
% Plot the samples
plot(s,z,'r*')
```


Sampling from a proposal function

What if we cannot sample from $f(x)$ but only from $g(x)$?
In that case we have to weight the samples by the factor $w(x)=\frac{f(x)}{g(x)}$
Let $g(x)=\sin (x)$
$w(x)=\frac{\operatorname{sinc}(x)}{\sin (x)}=\frac{1}{x}$

```
z1 = sin(pi*s);
w = 1./(pi*s);
z2 = z1 .* w;
figure(3)
plot(s,z2,'r.')
```


Approximate a PDF with particles

We need to sample more particles where the PDF is higher. But how?
We should uniformly sample the ' y ' axis and transform the values to the ' x ' axis. This means we need to inverte the function.

```
n = 1e4;
x = -1 + 2*rand(1,n);
y = sqrt(2) * erfinv(x);
figure
histogram(y)
```


$y=\operatorname{sqrt}\left(-2^{*} \log (\operatorname{rand}(1, n))\right) .{ }^{*} \cos \left(2 *\right.$ pi $\left.^{*} \operatorname{rand}(1, n)\right) ; \%$ or \sin figure
histogram(y)


```
plot(y,normpdf(y),'k.')
```


