

Automotive Environment Sensing

04 – Linear estimation, Kalman filter

Olivér Törő 2019

Budapest University of Technology and Economics Faculty of Transportation Engineering and Vehicle Engineering Department of Control for Transportation and Vehicle Systems

Situation

- We want to know the value of some quantity x
- We have two sensors with different precisions
- Based on the two measurements (z_1, z_2) give a linear estimation of x
 - The measurements are corrupted by zero mean Gaussian noise

E[x] = m $E[z_1] = m$ $E[z_1] = m$

• The noise STDs are σ_1 and σ_2

Linear estimation: $\hat{x} = a_1 z_1 + a_2 z_2$

Should we use both *z* or just the one with the smaller σ ?

Budapest University of Technology and Economics
Faculty of Transportation Engineering and Vehicle Engineering

Department of Control for Transportation and Vehicle Systems

Requirements for a good estimation

• Unbiased: the expectation of the estimated value equals the real value

$$E[\hat{x}] = a_1 E[z_1] + a_2 E[z_2]$$
$$m = a_1 m + a_2 m$$
$$\boxed{1 = a_1 + a_2}$$

$$\hat{x} = a_1 z_1 + a_2 z_2$$
 $\hat{x} = z_1 + a_2 (z_2 - z_1)$

Budapest University of Technology and Economics
Faculty of Transportation Engineering and Vehicle Engineering

Department of Control for Transportation and Vehicle Systems

Requirements for a good estimation

• Minimum variance: the variance of the estimation should be minimal

$$Var(\hat{x}) = E[(\hat{x} - E[\hat{x}])^2] =$$

$$= E[(a_1(z_1 - m) + a_2(z_2 - m))^2]$$
$$= a_1^2 E[(z_1 - m)^2] + a_2^2 E[(z_2 - m)^2] + 0 =$$

$$= a_1^2 \sigma_1^2 + a_2^2 \sigma_2^2$$

Budapest University of Technology and Economics Faculty of Transportation Engineering and Vehicle Engineering

Department of Control for Transportation and Vehicle Systems

$$a_1^2\sigma_1^2 + a_2^2\sigma_2^2 = a_1^2\sigma_1^2 + (1 - a_1)^2\sigma_2^2$$

Set the derivative of the variance with respect to a_1 and a_2 equal to zero:

$$0 = \frac{\partial \text{Var}(\hat{x})}{\partial a_1} = 2a_1\sigma_1^2 - 2(1 - a_1)\sigma_2^2$$
$$\boxed{a_1 = \frac{\sigma_2^2}{\sigma_1^2 + \sigma_2^2}} \boxed{a_2 = \frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2}}$$

$$\hat{x} = a_1 z_1 + a_2 z_2$$

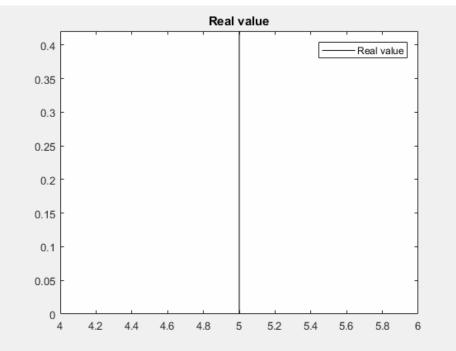
We give greater weight to the measurement with smaller noise

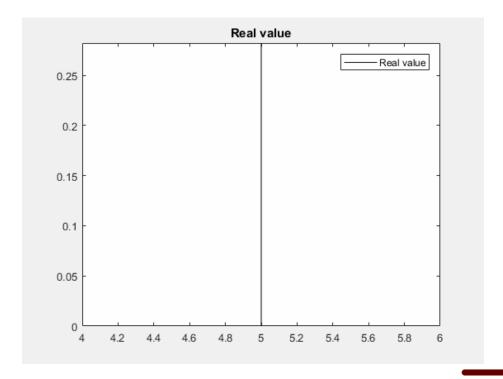
Budapest University of Technology and Economics

Faculty of Transportation Engineering and Vehicle Engineering

Department of Control for Transportation and Vehicle Systems

• Sensors with different precision





• Sensors with same precision

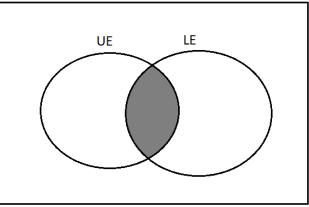
Budapest University of Technology and Economics

Department of Control for Transportation and Vehicle Systems

Does the estimated value \hat{x} have smaller variance than either σ_1^2 or σ_2^2 ? With a_1 and a_2 substituted we have

$$\operatorname{Var}(\hat{x}) = \frac{\sigma_1^2 \sigma_2^2}{\sigma_1^2 + \sigma_2^2}$$

Which is smaller than either σ_1^2 or σ_2^2 (Analogous to parallel resistors) **BLUE: Best Linear Unbiased Estimator MVUE: Minimum Variance Unbiased Estimator** If the noise is Gaussian, then the BLUE is also minimum variance.



Linear estimation – with model

Budapest University of Technology and Economics Faculty of Transportation Engineering and Vehicle Engineering

Department of Control for Transportation and Vehicle Systems

- What if, instead of two measurements we have one measurement and one predicted value based on some model?
- Let us change the notations:
 - $z_1 \rightarrow x_0$ is the prediction
 - $z_2 \rightarrow z$ is the measurement
- Simple example
 - Nearly constant velocity motion in a straight line
 - We are looking for the position
 - We can measure the position with error

Linear estimation – with model

Budapest University of Technology and Economics

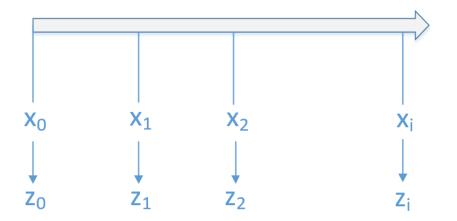
Faculty of Transportation Engineering and Vehicle Engineering

Discrete time nearly constant velocity motion in one dimension:

$$x_{k+1} = x_k + T\nu + w_k$$

- *T*: timestep
- *v*: constant speed
- *w*: noise acting on the motion
- v: noise on the measurements
- Noisy measurements: $z_k = x_k + v_k$
- Estimated position: \hat{x}

2019.03.06.



Starting from a random position around zero

$$x_0 = 0 + w_0$$

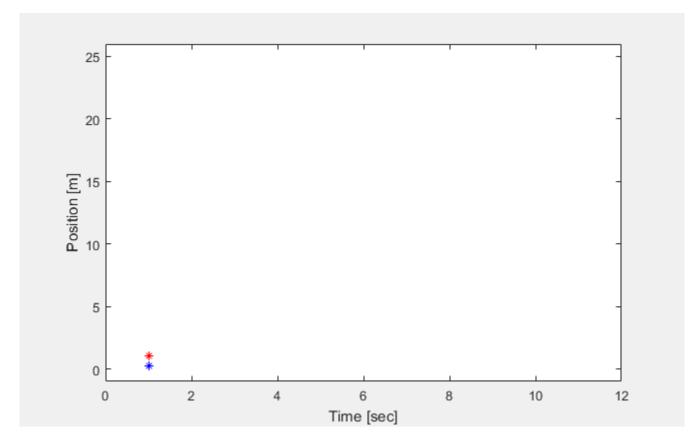
Initialize the estimation with the first measurement

 $z_0 = x_0 + v_0$ $\hat{x}_0 = z_0$

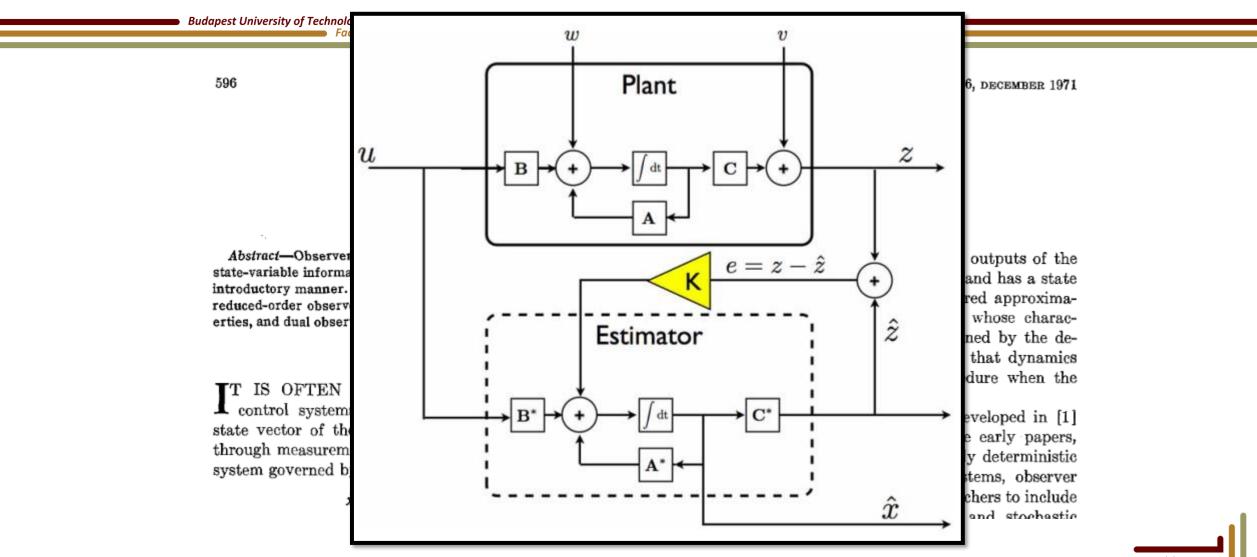
Linear estimation – with model

Budapest University of Technology and Economics

Faculty of Transportation Engineering and Vehicle Engineering
 Department of Control for Transportation and Vehicle Systems



State observer – Luenberger observer



LO vs KF

Budapest University of Technology and Economics Faculty of Transportation Engineering and Vehicle Engineering

Department of Control for Transportation and Vehicle Systems

- $\begin{aligned} \mathbf{x}_{k+1} &= \mathbf{\Phi}_k \mathbf{x}_k + \mathbf{\Delta}_k \mathbf{u}_k + \mathbf{\Gamma}_k \mathbf{w}_k \\ \mathbf{z}_k &= \mathbf{H}_k \mathbf{x}_k + \mathbf{v}_k \end{aligned} \qquad \qquad \hat{\mathbf{x}}_{k+1} &= \mathbf{\Phi}_k \hat{\mathbf{x}}_k + \mathbf{\Delta}_k \mathbf{u}_k + \mathbf{K} [\mathbf{z}_k \hat{\mathbf{z}}_k] \\ \hat{\mathbf{z}}_k &= \mathbf{H}_k \hat{\mathbf{x}}_k. \end{aligned}$
- Luenberger observer has low performance when noise is introduced to the system
- Kalman filter: Linear Quadratic Gaussian Estimator
 - Linear model
 - Quadratic cost function
 - Gaussian noise

Why quadratic cost?

Budapest University of Technology and Economics Faculty of Transportation Engineering and Vehicle Engineering Department of Control for Transportation and Vehicle Systems

- Positive definite: $x^T A x > 0$ for every non-zero x
- Symmetric positive definite (SPD) matrices have nice features:
 - Positive eigenvalues
 - A quadratic form is convex, if A is SPD

•
$$Q(x) = \frac{1}{2}x^{T}Ax - b^{T}x + c$$

•
$$\min_{x} \left(\frac{1}{2}x^{\mathsf{T}}Ax - b^{\mathsf{T}}x + c\right)$$
 and $Ax = b$ has the same solution

Budapest University of Technology and Economics Faculty of Transportation Engineering and Vehicle Engineering Department of Control for Transportation and Vehicle Systems

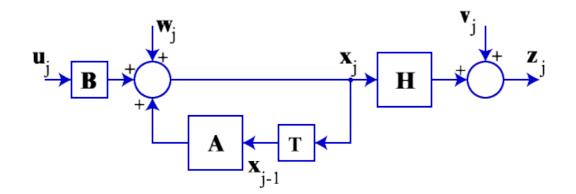
- x is normally distributed random vector: $x \sim \mathcal{N}(\mu, \Sigma)$
- If *x* describes a signal what is the expectation of the carried power?

$$E[||x||_{2}^{2}] = ||\mu||_{2}^{2} + tr(\Sigma)$$

Plant block diagram

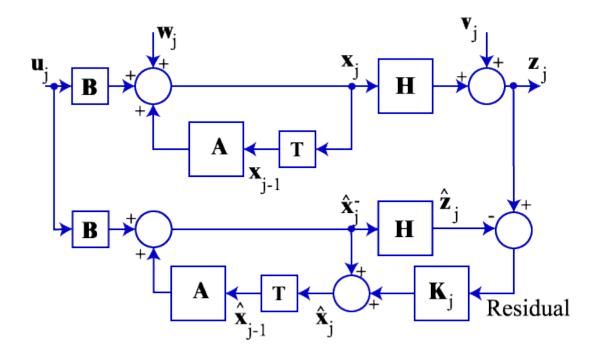
Budapest University of Technology and Economics

Faculty of Transportation Engineering and Vehicle Engineering
 Department of Control for Transportation and Vehicle Systems

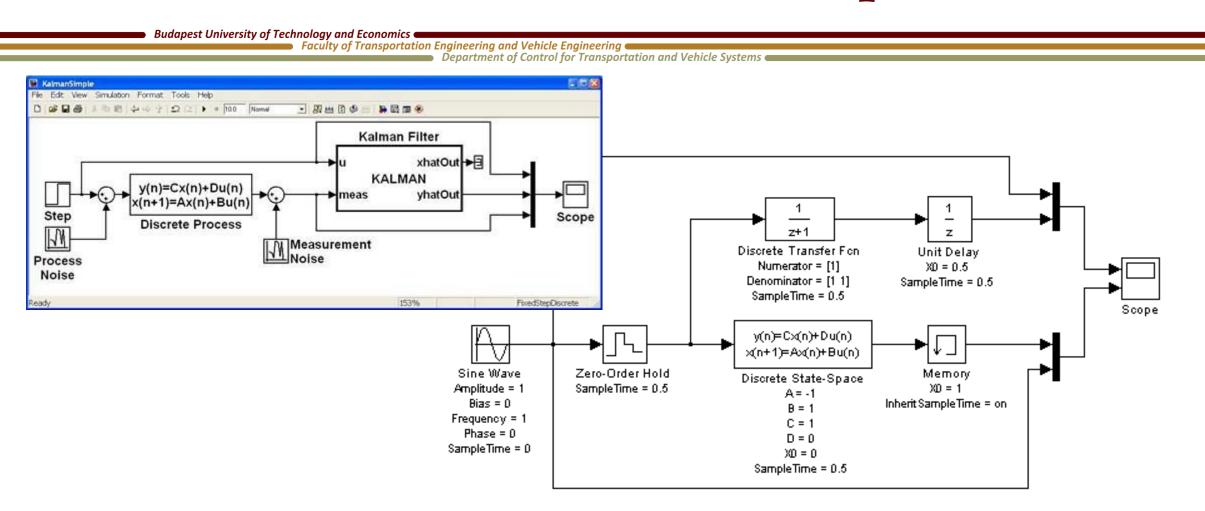


Plant and observer

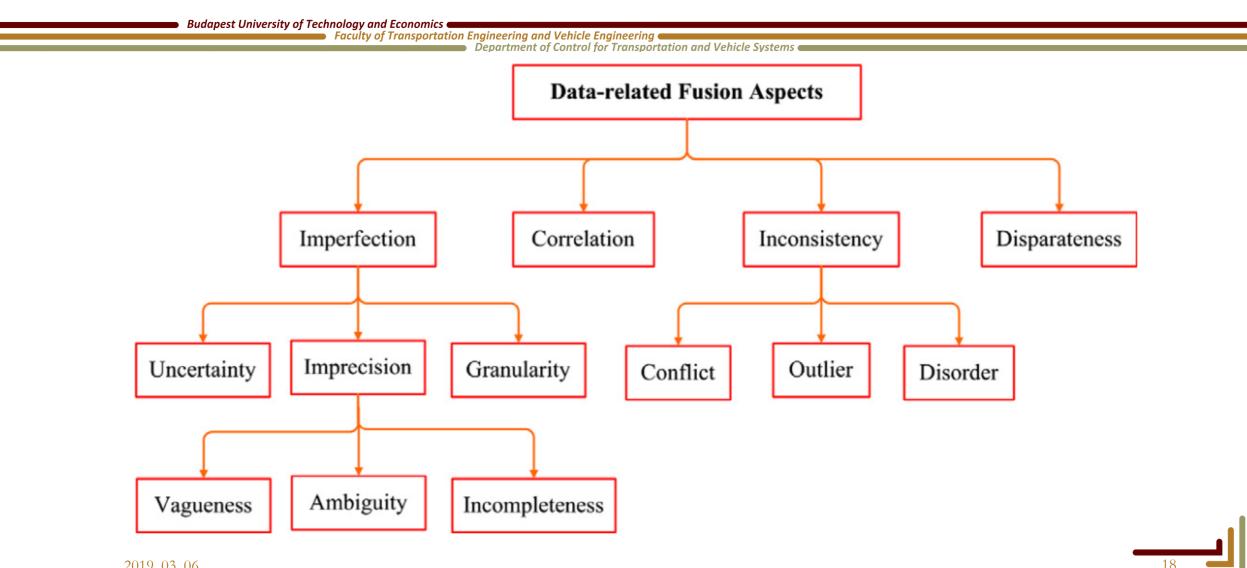
Budapest University of Technology and Economics Faculty of Transportation Engineering and Vehicle Engineering Department of Control for Transportation and Vehicle Systems



Simulink Discrete State Space



2019.03.06.



Data fusion

Budapest University of Technology and Economics

Faculty of Transportation Engineering and Vehicle Engineering Department of Control for Transportation and Vehicle Systems

- Probability theory (Bayesian inference)
- Dempster-Shafer theory (evidential belief reasoning)
- Fuzzy set theory (fuzzy reasoning)
- Possibility theory
- Rough set theory
- Random set theory
- Hybrid fusion
 - Fuzzy+DS
 - Fuzzy+Rough set

Method	Addressed data imperfection
Probabilistic	Uncertainty
Dempster-Shafer	Uncertainty and ambiguity
Fuzzy	Vagueness
Possibilistic	Incompleteness
Rough set	Ambiguity
Random set	Imperfection



Terminology

Budapest University of Technology and Economics

Faculty of Transportation Engineering and Vehicle Engineering

- Detection: knowing the presence of an object
- Tracking: Maintaining the state of a moving object over time using remote sensor measurements. In case of multi-target tracking the object has to be identified too

