
To

My husband who made me believe that I could write this book!

 Chew Moi Tin

My students who never cease to teach me.
My teachers who embedded knowledge in my mind.
My parents, Eva and Niranjan, who taught me the values of life.
Mamta, Anushree and Amiya for being so fault tolerant.

 Gourab Sen Gupta

Contents
Preface v

Acknowledgements ix

Bibliography x

Chapter 1 8051 Architecture Overview ………………….1
 1.0 Introduction 2
 1.1 Overview of 8051 Micro-controller 2
 1.2 On-Chip Memory Organization 5
 1.3 Special Function Registers 11
 1.4 Multiplexing Data and Address Bus 17
 1.5 Tutorial Questions 19

Chapter 2 Intro to Silicon Labs’ C8051F020 …..…….. 21
 2.0 Introduction 22
 2.1 CIP-51 22
 2.2 C8051F020 System Overview 24
 2.3 Memory Organization 26
 2.4 I/O Ports and Crossbar 29
 2.5 12-Bit Analog to Digital Converter 31
 2.6 8-Bit Analog to Digital Converter 32
 2.7 Digital to Analog Converters and Comparators 32
 2.8 Voltage Reference 33
 2.9 Tutorial Questions 38

Chapter 3 Instruction Set ……………………………….. 39
 3.0 Introduction 40
 3.1 Addressing Modes 40
 3.2 Instruction Types 43
 3.3 Tutorial Questions 69

Chapter 4 ASM Directives ...…………………………….. 71
 4.0 Introduction 72
 4.1 Address Control 72
 4.2 Symbol Definition 74
 4.3 Memory Initialization/Reservation 75
 4.4 Segment Control 78
 4.5 Example Program Template 80
 4.6 Tutorial Questions 81

i

Chapter 5 System Clock, Crossbar and GPIO ...……. 83
 5.0 Introduction 85
 5.1 Oscillator Programming Registers 86
 5.2 Watchdog Timer 88
 5.3 Digital Crossbar 90
 5.4 GPIO 93
 5.5 Crossbar and GPIO SFRs 96
 5.6 Ports 4 through 7 103
 5.7 Tutorial Questions 106

Chapter 6 C8051F020 C Programming ………….……109
 6.0 Introduction 110
 6.1 Register Definitions, Initialization and Startup Code 110
 6.2 Programming Memory Models 111
 6.3 C Language Control Structures 115
 6.4 Functions 122
 6.5 Interrupt Functions 123
 6.6 Re-entrant Functions 127
 6.7 Pointers 127
 6.8 Summary of Data Types 129
 6.9 Tutorial Questions 130

Chapter 7 Expansion Board for C8051F020 Target
Board …………………………………………. 131

 7.0 Introduction 132
 7.1 Starting a Project 134
 7.2 Blinking Using Software Delays 135
 7.3 Blinking Using a Timer 138
 7.4 Programming the LCD 142
 7.5 Reading Analog Signals 151
 7.6 Expansion Board Pictures 153
 7.7 Circuit Diagram of the Expansion Board 154
 7.8 Expansion Board Physical Component Layout 155
Chapter 8 Timer Operation and Programming ….…. 157
 8.0 Introduction 158
 8.1 Functional Description 159
 8.2 Timer Programming 160
 8.3 Timer SFRs 161
 8.4 Timers 0 and 1 Operating Modes 161
 8.5 Timers 2, 3 & 4 Operating Modes 164
 8.6 CKCON Register 170
 8.7 Timers 0 and 1 SFRs 171

ii

 8.8 Timer 2 SFRs 173
 8.9 Timer 3 SFRs 175
 8.10 Timer 4 SFRs 176
 8.11 Timer 2 - C Programming Example 178
 8.12 Tutorial Questions 181

Chapter 9 ADC and DAC ………………………………. 183
 9.0 Introduction 185
 9.1 12-Bit ADC (ADC0) 186
 9.2 Data Word Conversion Map (12-bit) 188
 9.3 Programming ADC0 189
 9.4 ADC0 SFRs 195
 9.5 8-Bit ADC (ADC1) 199
 9.6 Data Word Conversion Map (8-bit) 201
 9.7 Programming ADC1 201
 9.8 ADC1 SFRs 206
 9.9 12-Bit DACs (DAC0 and DAC1) 208
 9.10 Programming the DACs 210
 9.11 DAC0 SFRs 212
 9.12 DAC1 SFRs 213
 9.13 Tutorial Questions 214

Chapter 10 Serial Communication ……………..……… 215
 10.0 Introduction 216
 10.1 UART0 and UART1 217
 10.2 Programming the UARTs 219
 10.3 Operation Modes 220
 10.4 Interrupt Flags 225
 10.5 UARTx SFRs 227
 10.6 Blinking LED at Different Frequencies –
 C Programming Example 229
 10.7 Tutorial Questions 233
Chapter 11 Interrupts ……………………………………. 235
 11.0 Introduction 236
 11.1 Interrupt Organization 236
 11.2 Interrupt Process 239
 11.3. Interrupt Vectors 239
 11.4 External Interrupts 240
 11.5 Interrupt Latency 241
 11.6 Interrupt SFRs 241
 11.7 Tutorial Questions 249

Index ………………………....………………………………. 251

iii

iv

Preface

The 8051 Family is one of the fasted growing microcontroller
architectures in the world of electronics today. Intel Corporation
introduced 8051 more than two decades ago; it is as popular today as it
was then. Several chip vendors have extended 8051 to incorporate
advanced features, numerous additional peripherals and extra memory,
and have implemented mixed-signal capabilities. There are over 400
device variants of 8051 from various silicon vendors like Silicon
Laboratories, Philips, Amtel, Dallas and Infineon to name a few. 8051
and its variants are immensely popular in the academic world too, just as
they are in the arena of industrial applications. Embedded micro-
controllers have found their way into many everyday appliances like the
microwave oven, dish-washer and the fax machine. It is found even in
toys! Of course microprocessors and microcontrollers have been the
workhorses of embedded industrial applications for many years. It is for
these reasons that teaching of microcontrollers is integral to any degree
or diploma course in Electronics, Electrical, Mechatronics and
Information Science.

A fully integrated control system, with mixed signal
capabilities, is the emerging trend in the technological
industry. There is currently a demand for sophisticated
control systems with high-speed, precision digital and
analog performance. Microcontrollers with mixed-

signal capabilities are immensely popular in the industry. And it is for
these compelling reasons they are taught at many universities and
polytechnics delivering engineering courses. While there is a plethora of
such devices from many vendors, there is a dearth of text books dealing
with them. Every manufacturer supports its microcontroller device with
data sheets and user guides. These are so voluminous that new
learners, and often experienced blokes, just get blown off. One has to
sift through piles of information sheets to dig out relevant data or
methods even to get off the ground. Navigating through the information
is nerve wrecking and often an exercise in futility.

Why we
wrote this
book?

v

Whereas, it is precisely at this stage of learning that a leaner needs to be
hand-held and guided. This is where this book comes in. It is pitched for
the novice; someone just starting to learn microcontrollers. Only the
relevant information is presented in a concise manner which is simple to
read and comprehend. All the clutter has been cut out to make learning
easy and interesting. At the same time all the knowledge that is required
to accomplish a project is covered in fair details.

The book examines the features of an advanced
mixed-signal micro-controller. It is targeted mainly at
university and polytechnic students of electronics,
electrical and computer science subjects who are
involved in learning micro-controllers either at an
introductory or advanced level. For projects using

micro-controllers to design and build a system, this book will serve as a
handy reference and source of information. However, practising
engineers, hobbyists, science teachers and high school students, all
alike, will find this book useful too.

Who
should
read this
book?

C8051F020, manufactured by Silicon Laboratories, is
a ‘big brother’ of the ever popular 8051. Many features
and capabilities have been added to the basic 8051 to
create a very powerful micro-controller suitable for
high-end, high-speed industrial applications as well as
for use in every day electronic products. In this book

we detail the architecture and programming aspects of the micro-
controller. While readers conversant with the basic 8051 programming
will certainly find it easier to read and grasp the contents, no
assumptions are made about the prior knowledge of embedded
programming.

What is
in this
book?

Assembly level programming has had its days, though they are by no
means over yet. It is still the preferred language choice for writing
applications where program execution speed is critical and of paramount
importance such as in real-time systems. However, with the advent of
robust high level programming language compilers, there is a definite
shift towards writing programs in high-level languages such as C. In this

vi

book we do provide some examples in assembly code but the majority
are in C. So that a reader, with no prior knowledge of C programming, is
not disadvantaged, there is a complete chapter on C programming
(Chapter 6). While beginners must definitely spend time reading this
chapter, even experienced C programmers will find it worthwhile to
browse through it as there are many peculiarities and special features of
the KeilTM C compiler which are different from the ANSI C and are related
to the hardware architecture of the C8051F020 micro-controller.
Chapter 1 gives a brief overview of the basic 8051 architecture. Readers
intending to learn more about 8051 are advised to first read another text
book; a few are listed in the Bibliography.
The Silicon Labs C8051F020 micro-controller architecture is introduced
in Chapter 2. The memory organisation and the various on-chip
peripheral devices are briefly explained to give the reader a first taste of
the features of the micro-controller.
Chapter 3 details the addressing modes and the complete instruction set
of 8051. The assembler directives are summarised in Chapter 4.
Readers not intending to program in assembly language can safely skip
reading these two chapters.
The digital crossbar of the C8051F020 micro-controller is at the heart of
the programming architecture and one must master this early to exploit
the flexibility offered by the micro-controller in configuring peripherals
and external interfaces. Chapter 5 details not only the crossbar; it also
introduces other important features like the watchdog timer and
programming the oscillator.
Chapter 6 is all about learning to write programs in C. All the programs
that are listed in the text book have been written and tested using KeilTM
C compiler. While this compiler supports most of the ANSI C features, it
is in many respects ‘closer to the hardware’. A ‘must read’ for every
reader.
In Chapter 7 we present the design of an expansion board which is used
in conjunction with the Silicon Labs Micro-Controller Development Board
C8051F020-TB. The development board has rudimentary peripherals
built on it – it has the micro-controller chip, oscillator, power supply, RS-
232 Serial communication connector and just one push-button switch
and an LED. The expansion board provides additional inputs for
ADC/DAC, a LCD display, additional LEDS and several toggle and push-
button switches. The expansion board will be very handy for learners to

vii

carry out experiments while learning the basics of embedded
programming. The complete design of the expansion board is provided
so that it can be built by anybody with some skills in PCB soldering. At
some stage, it is envisaged that the expansion board will be available
from Silicon Laboratories as a standard product.
C8051F020 has a very rich set of timers which are very handy for
advanced applications. They are also used in conjunction with ADC/DAC
and for serial communication. Timer operations and programming are
detailed in Chapter 8.
Chapter 9 introduces the on-chip ADCs and DACs and how to program
them. There are two multi-channel ADCs offering 12-bit and 8-bit
conversion resolution, and two 12-bit DACs.
Chapter 10 deals with the programming aspects of the Serial
Communication using UARTs. Different communication modes and
programming the Baud rate generator are covered in detail.
Interrupts have been immensely enhanced and extended in C8051F020
and are much more elaborate than the basic 8051 interrupts. These are
covered in Chapter 11.

viii

Acknowledgements

Several wonderful people have contributed to the successful completion
of this book and the authors wish to extend their sincere thanks to them
for their fabulous work.

Dr Chris Messom, Institute of Information and Mathematical Sciences,
Massey University, wrote Chapter 6, C8051F020 C Programming.

Ken Mercer, Institute of Information Sciences and Technology, Massey
University, wrote Chapter 7, Expansion Board for C8051F020 Target
Board. Ken also designed and built the expansion board and for this he
was ably supported by our student, Jonathan Seal. Together they have
done a wonderful job.

James Cheong, graduate of IIST, Massey University, contributed by way
of initial script typing and building the data tables.

Dr Subhas Mukhopadhyay, Institute of Information Sciences and
Technology, Massey University, made several valuable suggestions to
improve the book overall.

Dr Douglas R. Holberg, Director of Engineering, Silicon Laboratories,
for his immense enthusiasm and support for the project.

Last, but not the least, the authors gratefully acknowledge the efforts put
in by Prof. Serge Demidenko, Monash University, for pouring over the
manuscript and painstakingly editing it. His suggestions and inputs have
been invaluable.

ix

Bibliography

I. Scott MacKenzie, The 8051 Microcontroller, Upper Saddler River,
N.J.: Prentice Hall, 1999

Sencer Yeralan, Helen Emery, The 8051 cookbook for Assembly and
C : with experiments in mechatronics and robotics, Gainesville, Fla.:
Rigel Press, 2000

David Calcutt, Fred Cowan, Hassan Parchizadeh, 8051
microcontrollers : an applications-based introduction, Boston, Mass.
: Newnes, 2003

Cx51 Compiler, Optimizing C Compiler and Library Reference for
Classic and Extended 8051 Microcontrollers User’s Guide, Keil
Software, 11.2000

Macro Assembler and Utilities for 8051 and Variants, Macro
Assembler, Linker/Locator, Library Manager, Object Hex-Converter
for 8051, extended 8051 and 251 Microcontrollers User’s Guide, Keil
Software , 07.2000

C8051F020 Data Sheets (C8051F020/1/2/3-DS14 Preliminary Rev. 1.4),
Silicon Laboratories, 12/03

x

1

8051 Architecture Overview

1.0 Introduction 2
1.1 Overview of 8051 Micro-controller 2

Ports, Address Latch Enable (ALE), Reset (RST), System
Clock - Oscillator

1.2 On-Chip Memory Organization 5
General Purpose RAM, Bit-addressable RAM, Register
Banks

1.3 Special Function Registers 11
Program Status Word, The B Register, Stack Pointer, Data
Pointer, Parallel Input/Output Port Registers, Timer
Registers, Serial Communication Registers, Interrupt
Management Registers

1.4 Multiplexing Data and Address Bus 17
1.5 Tutorial Questions 19

 2 Chapter 1 8051 Architecture Overview

1.0 Introduction
In 1980, Intel introduced 8051, which is the first device in the MCS-51™
family of microcontroller, to the market. There are other second source
suppliers of the ICs; these include Silicon Laboratories, Atmel, Philips,
Dallas Semiconductor and several others.

Intel 8051 has
been around
for over two
decades but is
still very
popular.

Though more than 20 years have passed since its introduction, the 8051
is still as relevant today as it was in those days. In recent years some
companies have incorporated many different features into the basic 8051
chip and one such company is Silicon Laboratories. In 2000, Silicon
Laboratories manufactured a field programmable, mixed signal chip
(C8051F020) based on the 8051 core CPU. The chip is offered in
different combinations of clock speed, FLASH and on-chip RAM size.
They also offer different digital and analog peripherals such as:

♦ I/O ports
♦ Timers/Counters
♦ UARTs (Universal Asynchronous Receiver Transmitters)
♦ SPI and SMBus serial transceivers
♦ ADC/DAC (Analog-to-Digital Converters / Digital-to-Analog

Converters)
♦ Temperature Sensor

1.1 Overview of 8051 Microcontroller
These enhanced microcontrollers still use the MCS-51TM basic set of
machine instructions. The only differences that set them apart are the
additional hardware features and the enhanced speed of operation. This
section briefly describes the basic functions of the pins available.

The internal features of the basic 8051 microcontroller can be seen in the
block diagram shown in Figure 1.1. It is capable of addressing 64K of
external program memory and a separate 64K of external data memory if
required.

 Chapter 1 8051 Architecture Overview 3

Timer/Counter
(Timer 0 &
 Timer 1)

4K byte Program
Memory (ROM)

128 bytes
Data Memory
(RAM)

I/O ports Serial Port 64 K Bus
Expansion Control

8051 CPU

Oscillator
&Timing

P3 P2 P1 P0
 (Address/data)

TxD RxD ALE /PSEN
From Crystal
Oscillator or RC
network

/INT0 /INT1

Other
interrupts

T0 T1

 Figure 1.1 Block Diagram of the generic 8051 Microcontroller

Ports
The 8051 consists of 4 standard Ports (0, 1, 2, and 3). The ports are
multi-purpose. In a minimum-component basic design without expansion,
they are used as general purpose I/O. For larger designs incorporating
external memory, the ports function as multiplexed address and data
buses. With careful hardware design and satisfying the timing
requirements of 8051, the external memory can be easily and
seamlessly made accessible to the programmer. In addition, the ports
may be controlled by a digital peripheral, UART or external interrupts.
The ports are both bit- and byte-addressable. For example, the pins of
Port 0 are designated as P0.0, P0.1, P0.2, etc. Figure 1.2 shows the pin
assignments of 8051.

Address Latch Enable (ALE)
The 8051 uses the ALE signal for demultiplexing the address and data
bus (AD7-AD0) associated with external memory (see section 1.5).
External memory is accessed in two phases delineated by the state of
the ALE signal. During the first phase, ALE is high and the lower 8-bits of
the Address Bus are latched into an external register. When this is done,

Intel 8051 has
four multi-
purpose
flexible ports
which are bit-
and byte-
addressable.

 4 Chapter 1 8051 Architecture Overview

the port lines are available for data input or output. When ALE falls,
signaling the beginning of the second phase, the address latch outputs
remain fixed and are no longer dependent on the latch input. Later in the
second phase, the Data Bus controls the state of the AD[0:7] at the time
/RD or /WR is asserted.

P0.0 AD0
P0.1 AD1
P0.2 AD2
P0.3 AD3
P0.4 AD4
P0.5 AD5
P0.6 AD6
P0.7 AD7

VCC

P2.0 AD8
P2.1 AD9
P2.2 AD10
P2.3 AD11
P2.4 AD12
P2.5 AD13
P2.6 AD14
P2.7 AD15

P1.0
 to

P1.7
VSS

40

39
38
37
36
35
34
33
32

21
22
23
24
25
26
27
28

1
to

8
20

RXD P3.0
TXD P3.1
/INT0 P3.2
/INT1 P3.3
T0 P3.4
T1 P3.5
/WR P3.6
/RD P3.7

 RST

 /EA

 ALE

 /PSEN

10
11
12
13
14
15
16
17

9

31

30

29

XTL2

XTL1

18

19

8051

Figure 1.2 8051 pin assignment

Reset (RST)
Reset circuitry allows the 8051 to be easily placed in a predefined default
condition. On entry to the reset state, the following occur:

♦ The MCU halts program execution

♦ Special Function Registers (SFRs) are initialized to their defined
reset values

♦ External port pins are forced to a known state

♦ Interrupts and timers are disabled

Sources of reset include Power-on Reset and External Reset.

 Chapter 1 8051 Architecture Overview 5

System Clock - Oscillator
The 8051 features an on-chip oscillator that is typically driven by a
crystal connected to XTAL1 and XTAL2 with two external stabilizing
capacitors as shown in Figure 1.3.

XTAL1

XTAL2

Figure 1.3 Schematic of the Oscillator

The nominal crystal frequency is 12 MHz for most ICs in the MCS-51™
family. The on-chip oscillator needn’t be driven by a crystal; it can be
replaced by a TTL clock source connected to XTAL1 instead.

The on-chip
oscillator
needn’t be
driven by a
crystal; a TTL
clock source
will suffice.

1.2 On-Chip Memory Organization
The 8051 has a limited on-chip program (code) and data memory space.
However it has the capability of expanding to a maximum of 64K external
code memory and 64K external data memory when required.

Code and data
memory may
be expanded
using external
components. Program Memory (i.e. code memory can either be the on-chip ROM or

an external ROM as shown in Figure 1.4. When /EA (External Access)
pin is tied to +5 volts, it allows the program to be fetched from the
internal 4K (0000H-0FFFH) ROM. If /EA is connected to ground, then all
program fetches are directed to external ROM. In addition /PSEN is used
as the read strobe to external ROM, while it is not activated for the
internal program fetches.

 6 Chapter 1 8051 Architecture Overview

 ~ ~

/EA=0
External

/EA=1
Internal

/PSEN

FFFFH

0FFFH

0000H

0FFFH

0000H

Figure 1.4 Program Memory Organization (Read Only)

The Data Memory organization is shown in Figure 1.5. It depicts the
internal and external Data Memory space available in 8051. Figures 1.6a
and 1.6b show more details of the internal data memory (Read/Write
memory or Random Access Memory)

The Internal Data Memory space, as shown in Figure 1.5, is divided into
three sections. They are referred to as the Lower 128, the Upper 128,
and the SFR. In fact there are 384 physical bytes of memory space,
though the Upper 128 and SFRs share the same addresses from
location 80H to FFH. Appropriate instructions, using direct or indirect
addressing modes, will access each memory block accordingly.

 Chapter 1 8051 Architecture Overview 7

~ ~

Internal

External

/RD

/WR

FFH

80H
7FH

00H

0FFFFH

0000H

Upper 128
Indirect
addressing

Special Function
Registers

Direct
Addressing

Lower 128
Direct/Indirect
Addressing

Figure 1.5 Internal & External Data memory (Random Access Memory) Organization

As shown in Figure 1.6a and 1.6b, the internal data memory space is
divided into register banks (00H-1FH), bit-addressable RAM (20H-2FH),
general purpose RAM (30H-7FH), and special function registers (80H-
FFH).
In the Lower 128 bytes of RAM, 4 banks of 8 registers each are available
to the user. The 8 registers are named R0 through R7. By programming
two bits in the Program Status Word (PSW), an appropriate register bank
can be selected.

In the Special Function Register (SFR) block (Figure 1.6b) registers
which have addresses ending with OH or 8H are byte- as well as bit-
addressable. Some registers are not bit-addressable at all. For example,
the Stack Pointer Register (SP) and Data Pointer Register (DPTR) are
not bit-addressable.

 8 Chapter 1 8051 Architecture Overview

 Byte
Address Bit Address

 7F

 30

General
Purpose

RAM

B 2F 7F 7E 7D 7C 7B 7A 79 78
i 2E 77 76 75 74 73 72 71 70
t 2D 6F 6E 6D 6C 6B 6A 69 68
 2C 67 66 65 64 63 62 61 60

A 2B 5F 5E 5D 5C 5B 5A 59 58
d 2A 57 56 55 54 53 52 51 50
d 29 4F 4E 4D 4C 4B 4A 49 48
r 28 47 46 45 44 43 42 41 40
e 27 3F 3E 3D 3C 3B 3A 39 38
s 26 37 36 35 34 33 32 31 30
s 25 2F 2E 2D 2C 2B 2A 29 28
a 24 27 26 25 24 23 22 21 20
b 23 1F 1E 1D 1C 1B 1A 19 18
l 22 17 16 15 14 13 12 11 10
e 21 0F 0E 0D 0C 0B 0A 09 08
 20 07 06 05 04 03 02 01 00
 1F
 18

Bank 3

 17
 10

Bank 2

 0F
 08

Bank 1

 07
 00

Default Register Bank for R0 – R7

Figure 1.6a Summary of 8051 on-chip Data Memory
 (Register Banks and RAM)

 Chapter 1 8051 Architecture Overview 9

Byte
Address Bit Address

FF
F0 F7 F6 F5 F4 F3 F2 F1 F0 B

E0 E7 E6 E5 E4 E3 E2 E1 E0 ACC

D0 D7 D6 D5 D4 D3 D2 - D0 PSW

B8 - - - BC BB BA B9 B8 IP

B0 B7 B6 B5 B4 B3 B2 B1 B0 P3

A8 AF - - AC AB AA A9 A8 IE

A0 A7 A6 A5 A4 A3 A2 A1 A0 P2

99 Not bit-addressable SBUF
98 9F 96 95 94 93 92 91 90 SCON

90 97 96 95 94 93 92 91 90 P1

8D Not bit-addressable TH1
8C Not bit-addressable TH0
8B Not bit-addressable TL1
8A Not bit-addressable TL0
89 Not bit-addressable TMOD
88 8F 8E 8D 8C 8B 8A 89 88 TCON
87 Not bit-addressable PCON

83 Not bit-addressable DPH
82 Not bit-addressable DPL
81 Not bit-addressable SP
80 87 86 85 84 83 82 81 80 P0

Figure 1.6b Summary of 8051 on-chip data Memory

 (Special Function Registers)

 10 Chapter 1 8051 Architecture Overview

General Purpose RAM
There are 80 bytes of general purpose RAM from address 30H to 7FH.
The bottom 32 bytes from 00H to 2FH can be used as general purpose
RAM too, although these locations have other specific use also. Any location in

the general
purpose RAM
can be
accessed
freely using
the direct or
indirect
addressing
modes.

Any location in the general purpose RAM can be accessed freely using
the direct or indirect addressing modes. For example, to read the
contents of internal RAM address 62H into the accumulator A, the
following instruction could be used:

 MOV A,62H

The above instruction uses direct addressing and transfers a byte of data
from location 62H (source) to the accumulator (destination). The
destination for the data is implicitly specified in the instruction op-code as
the accumulator (A). Addressing modes are discussed in details in
Chapter 3 (Instruction Set).
Internal RAM can also be accessed using indirect addressing through R0
or R1. The following two instructions perform the same operation as the
single instruction above:

 MOV R1,#62H
 MOV A,@R1

The first instruction uses immediate addressing to transfer the value 62H
into register R1. The second instruction uses indirect addressing to
transfer the data “pointed to by R1” into the accumulator.

Bit-addressable RAM
There are 128 general purpose bit-addressable locations at byte
addresses 20H through 2FH. For example, to clear bit 78H, the following
instructions could be used:

 CLR 78H

Referring to Figure 1.6a, note that “bit address 78H” is the least
significant bit (bit 0) at “byte address 2FH”. The instruction has no effect
on the other bits at this address. The same operation can also be
performed as follows:

 Chapter 1 8051 Architecture Overview 11

 MOV A,2FH
 ANL A,#11111110B
 MOV 2FH,A

Another alternative is to use the following instruction:
 CLR 2F.0H

Register Banks
The bottom 32 locations of the internal memory, from location 00H to
1FH, contain the register banks. The 8051 instruction set supports 8
registers, R0 through R7. After a system reset these registers are at
addresses 00H to 07H. The following instruction reads the contents of
address 04H into the accumulator A:

 MOV A,R4 ;this is a 1 byte instruction using
 ;register addressing mode

The same operation can be performed using the following instruction:

 MOV A,04H ;this is a 2-byte instruction using
 ;direct addressing mode

Instructions using registers R0 to R7 are shorter than the equivalent
instructions using direct addressing. Thus the data items used frequently
in a program should use one of these registers to speed up the program
execution.

1.3 Special Function Registers
The 8051 internal registers are configured as part of the on-chip RAM.
Hence each of these registers also has a memory address. There are 21
special function registers (SFRs) at the top of the internal RAM, from
addresses 80H to FFH (see Figure 1.6b).

SFRs are
generally
accessed
using direct
addressing.
Some SFRs
are both bit-
and byte-
addressable.

Most SFRs are accessed using direct addressing. Some SFRs are both
bit-addressable and byte-addressable. For example, the instructions

 SETB 0D3H
 SETB 0D4H

 12 Chapter 1 8051 Architecture Overview

set bit 3 and 4 in the Program Status Word (PSW.3 and PSW.4), leaving
the other bits unchanged. This will select Bank 3 for registers R0 to R7 at
address locations 18H to 1FH. Since the SETB instruction operates on
bits (not bytes), only the addressed bit is affected.

Program Status Word
The program status word (PSW) at address D0H and contains the status
bits as shown in Table 1.1.

Bit Symbol Bit Address Description
PSW.7 CY D7H Carry flag
PSW.6 AC D6H Auxiliary carry flag
PSW.5 F0 D5H User Flag 0
PSW.4 RS1 D4H Register bank select 1

PSW.3 RS0 D3H

Register bank select 0
 00 = bank 0; address 00H-07H
 01 = bank 1; address 08H-0FH
 10 = bank 2; address 10H-17H
 11 = bank 3; address 18H-1FH

PSW.2 OV D2H Overflow flag
PSW.1 - D1H Reserved
PSW.0 P D0H Even parity flag

Table 1.1 Summary of PSW Register bits

Carry Flag (CY)

The carry flag (CY) has a dual purpose. It is used in the traditional way
for arithmetic operations – it is set if there is a carry out of bit 7 during an
addition operation or set if there is a borrow into bit 7 during a subtraction
operation. For example, if accumulator A=F1H, then the instruction

 ADD A,#15

leaves a value of 00H in the accumulator and sets the carry flag in PSW
(PSW.7).
The carry flag is extensively used as a 1-bit register in Boolean
operations on bit-valued data. For example, the following instruction

 Chapter 1 8051 Architecture Overview 13

ANDs bit 38H with the carry flag and places the result back in the carry
flag:

 ANL C,038H

Auxiliary Carry Flag (AC)
When adding binary coded decimal (BCD) values, the auxiliary carry flag
(AC) is set if a carry was generated out of bit 3 into bit 4 or if the result in
the lower nibble is in the range 0AH to 0FH. For example, the following
instruction sequence will result in the auxiliary carry flag being set.

 MOV A,#8

MOV R0,#2

 ADD A,R0

User Flag 0 (F0)
This is a general purpose flag bit available for user applications.

Register Bank Select Bits (RS1 and RS0)
The register bank select bits, RS0 and RS1, determine the active register
bank. They are cleared after reset (so Bank 0 is selected by default) and
are changed by the application program as required.

For example, the following instruction sequence enables register Bank 3
then moves the contents of register R0 (byte address 18H, see Figure
1.6a) to the accumulator:

 SETB RS1 ;alternatively use instruction
 ;SETB 0D4H
 SETB RS0 ;alternatively use instruction
 ;SETB 0D3H
 MOV A,R0

Overflow Flag (OV)
The overflow flag (OV) is set after an addition or subtraction operation if
there is an arithmetic overflow (the result is out of range for the data
size). When signed numbers are added or subtracted, a program can

 14 Chapter 1 8051 Architecture Overview

test this bit to determine if the result is in the proper range. For 8-bit
signed numbers, the result should be in the range of +127 to –128).

Even Parity Flag (P)
The number of ‘1’ bits in the accumulator plus the parity bit (P) is always
even. The parity bit is automatically set or cleared to establish even
parity with the accumulator. For example, if the accumulator contains
00101100B then P is set to 1. P is reset to 0 if the accumulator contains
even number of 1s.

The B Register
The B register, or accumulator B, is at address F0H and is used along
with the accumulator for multiplication and division operations. For
example:

 MOV A,#9
 MOV B,#5
 MUL AB ;9 x 5 = 45 or 2DH, B=0, A=2DH

 MOV A,#99
 MOV B,#5
 MUL AB ;99 x 5 = 495 or 1EFH, B=1, A=EFH

 MOV A,#10
 MOV B,#5
 DIV AB ;10/5 = 2, Remainder=0 , B=0, A=2

 MOV A,#99
 MOV B,#5
 DIV AB ;99/5=19(13H),Remainder=4,B=4,A=13H

The B register can also be used as a general purpose register. It is bit-
addressable through bit address F0H to F7H.

Stack Pointer
The stack pointer (SP) is an 8-bit register and is located at address 81H.
Stack operations include “pushing” data on the stack and “popping” data
off the stack. Each time data is pushed on to the stack, SP is

 Chapter 1 8051 Architecture Overview 15

incremented. Popping from the stack reads data out and SP is
decremented. For example if SP=6FH and ACC=20H, after pushing the
accumulator content onto the stack, SP becomes 70H as shown in
Figure 1.7.

 MOV A,#20H
 MOV SP,#6FH
 PUSH ACC

SP=6FH before PUSH 6FH XX
After PUSH ACC, SP=70H 70H 20H

 .

.

.

Figure 1.7 Memory snap-shot of the Stack

Data Pointer
The data pointer register (DPTR) is used to access external code or data
memory. It is a 16-bit register located at addresses 82H (DPL, low byte)
and 83H (DPH, high byte). The following instructions load 5AH into the
external RAM location 1040H.

 MOV A,#5AH
 MOV DPTR,#1040H
 MOVX @DPTR,A

The first instruction uses immediate addressing to load the data constant
5AH into the accumulator. The second instruction also uses immediate
addressing to load the 16-bit address constant 1040H into the data
pointer. The third instruction uses indirect addressing to move the value
in A (i.e. 5AH) to the external RAM location whose address is in the
DPTR register (i.e. 1040H). The “X” in the mnemonic “MOVX” indicates
that the move instruction accesses external data memory.

 16 Chapter 1 8051 Architecture Overview

Parallel Input/Output Port Registers
The 8051 I/O ports consist of Port 0 located at address 80H, Port 1 at
address 90H, Port 2 at address A0H and Port 3 is located at address
B0H. All the ports are bi-directional. Besides being used as general
input/output lines, Port 0 and 2 can be used to form the 16-bit address in
order to interface with the external memory, with Port 0 being the low
byte of the address and the Port 2 outputting the high byte of the
address. Similarly port 3 pins have alternate functions of serving as
interrupt and timer inputs, serial port inputs and outputs, as well as RD
and WR lines for external Data Memory.

Bit-
addressable
ports of 8051
provide
powerful
interfacing
possibilities.

All the ports are bit-addressable and thus provide powerful interfacing
possibilities. For example, if a Light Emitting Diode (LED) is connected
through an appropriate driver to Port 1 bit 5, it could be turned on and off
using the following instructions-

 SETB P1.5

will turn the LED on, and

 CLR P1.5

will turn it off.
These instructions use the dot operator to address a bit of Port 1.
However, the following instruction can also be used:

 CLR 95H ; same as CLR P1.5

Timer Registers

The 8051
contains two
16-bit
timer/counters
for timing
intervals and
counting
events.

The basic 8051 contains two 16-bit timer/counters for timing intervals or
counting events. Timer 0 is located at addresses 8AH (TL0, low byte)
and 8CH (TH0, high byte) and Timer 1 is located at addresses 8BH (TL1,
low byte) and 8DH (TH1, high byte). The Timer Mode register (TMOD),
which is located at address 89H, and the Timer Control register (TCON),
which is located at address 88H, are used to program the timer
operations. Only TCON is bit-addressable. Timer operations and
programming details of C8051F020 are discussed in Chapter 8.

 Chapter 1 8051 Architecture Overview 17

Serial Communication Registers
The 8051 contains an on-chip serial port for communication with serial
devices such as modems or for interfacing with other peripheral devices
with a serial interface (A/D converters, RF/IR transmitters, etc). The
Serial Data Buffer register (SBUF) located at address 99H holds both the
transmit data and the receive data. Writing to SBUF loads data for
transmission while reading SBUF returns the received data. Various
modes of operation are programmable through the bit-addressable Serial
port Control register (SCON), which is located at address 98H. Serial
communication issues for C8051F020 are discussed in detail in Chapter
10.

Interrupt Management Registers
The 8051 has 5 interrupt sources which include 2 external interrupts, 2
timer interrupts and a serial port interrupt. Each interrupt can be
individually enabled or disabled by writing a ‘1’ or a ‘0’ respectively into
the Interrupt Enable register (IE). The bit 7 of the register is a global
enable bit, which if cleared, will disable all interrupts. In addition, each
interrupt source can be set to either one of the two priority levels i.e. High
or Low. This is done through the Interrupt Priority register (IP), which is
located at address B8H. Interrupts for C8051F020 are discussed in detail
in Chapter 11.

1.4 Multiplexing Address and Data Bus
In order to save pins and accommodate other functions, the 8051 was
designed with multiplexed address and data buses in mind. It reduces
the separate 16 address and 8 data lines to a combined 16 lines of
address and data.

The multiplexed mode operates by latching the low byte of the address
using the ALE signal during the first half of each memory cycle. A
74HC373 (or equivalent) latch holds the low byte of the address stable
for the duration of the memory cycle. During the second half of the
memory cycle, data is read from or written to the data bus.

 18 Chapter 1 8051 Architecture Overview

Figure 1.8a shows the normal write cycle in the execution of a 8051
instruction. Figure 1.8b shows the hardware connection to de-multiplex
the address and data lines to allow for external memory access.

Memory Cycle

A8-A15 Address

ALE

AD0-AD7 Address Data

/WR

Figure 1.8a Write cycle of 8051 instruction

AD0

AD7

8051

D0

D7

A0

A7

A8

A15

P0.0

P0.7

ALE

P2.0

P2.7

/WR

74LS373

Latch

 EL /OE

 Figure 1.8b Hardware connection to de-multiplex the address and data bus

 Chapter 1 8051 Architecture Overview 19

1.5 Tutorial Questions

1. What instruction sequence could be used to read bit 1 of Port 0
and write the state of the bit read to bit 0 of Port 2?

2. Illustrate an instruction sequence to store the value of 8AH in
external RAM at address 3CB0H.

3. Write an instruction to initialize the stack pointer to create a 32-
byte stack at the top of the memory of 8051.

4. What is the bit address of bit 2 in the byte address 2BH in the
8051’s internal data memory?

5. What is the bit address of the most significant bit in the byte
address 2DH in the 8051’s internal data memory?

6. What is the state of the Parity Flag in the PSW after the execution
of each of the following instructions?

 (a) MOV A, #0F1H
 (b) MOV A, #0CH

2

Intro to Silicon Labs® C8051F020

2.0 Introduction 22
2.1 CIP-51 22
2.2 C8051F020 System Overview 24
2.3 Memory Organization 26

Program Memory, Data Memory, Stack, Special Function
Registers

2.4 I/O Ports and Crossbar 29
2.5 12-Bit Analog to Digital Converter 31
2.6 8-Bit Analog to Digital Converter 32
2.7 Digital to Analog Converters and Comparators 32
2.8 Voltage Reference 33
2.9 Tutorial Questions 38

 22 Chapter 2 Introduction to Silicon Labs’ C8051F020

2.0 Introduction
This chapter gives an overview of the Silicon Labs C8051F020 micro-
controller. On-chip peripherals like ADC and DAC, and other features like
the cross-bar and the voltage reference generator are briefly introduced.
While programming using a high level language, such as C, makes it
less important to know the intricacies of the hardware architecture of the
micro-controller, it is still beneficial to have some knowledge of the
memory organization and special function registers. Thus, these are also
covered in this chapter.

2.1 CIP-51
Silicon Labs’ mixed-signal system chips utilize the CIP-51 microcontroller
core. The CIP-51 implements the standard 8051 organization, as well as
additional custom peripherals. The block diagram of the CIP-51 is shown
in Figure 2.1.

Silicon Labs’
mixed-signal
system chips
utilise the CIP-
51 micro-
controller core,
which is fully
compatible
with 8051
instruction
sets.

The CIP-51 employs a pipelined architecture and is fully compatible with
the MCS-51™ instruction set. The pipelined architecture greatly
increases the instruction throughput over the 8051 architecture.

With the 8051, all instructions except for MUL and DIV take 12 or 24
system clock cycles to execute, and is usually limited to a maximum
system clock of 12 MHz. By contrast, the CIP-51 core executes 70% of
its instructions in one or two system clock cycles, with no instructions
taking more than eight system clock cycles. With the CIP-51's maximum
system clock at 25 MHz, it has a peak throughput of 25 millions of
instructions per second (MIPS). The CIP-51 has a total of 109
instructions. Table 2.1 summarizes the number of instructions that
require 1 to 8 clock cycles to execute.

 Chapter 2 Introduction to Silicon Labs’ C8051F020 23

DATA BUS

TMP1 TMP2

PRGM. ADDRESS REG.

PC INCREMENTER

ALU
PSW

DATA BUS

D
A

TA
 B

U
S

MEMORY
INTERFACE

MEM_ADDRESSD8

PIPELINE

BUFFER

DATA POINTER

INTERRUPT
INTERFACE

SYSTEM_IRQs

EMULATION_IRQ

MEM_CONTROL

CONTROL
LOGIC

A16

PROGRAM COUNTER (PC)

STOP

CLOCK

RESET

IDLE
POWER CONTROL

REGISTER

D
AT

A
 B

U
S

SFR
BUS

INTERFACE

SFR_ADDRESS

SFR_CONTROL

SFR_WRITE_DATA

SFR_READ_DATA

D8

D8

B REGISTER

D
8

D
8

ACCUMULATOR

D
8

D8

D8

D8

D
8

D
8

D
8

D8

MEM_WRITE_DATA

MEM_READ_DATA
D

8

SRAM
ADDRESS
REGISTER

SRAM
(256 X 8)

D
8

STACK POINTER

D
8

Figure 2.1 Block Diagram of CIP-51

Clock Cycles to
execute 1 2 2/3 3 3/4 4 4/5 5 8

Number of
Instructions 26 50 5 14 7 3 1 2 1

Table 2.1 Execution Time of CIP-51 instructions

 24 Chapter 2 Introduction to Silicon Labs’ C8051F020

2.2 C8051F020 System Overview
The Silicon Labs C8051F020 is a fully integrated mixed-signal System-
on-a-Chip microcontroller available in a 100 pin TQFP package. Its main
features are shown in Figure 2.2 and summarized in Table 2.2. The
block diagram is shown in Figure 2.3.

JTAG64KB
ISP FLASH

4352 B
SRAM

SANITY
CONTROL

+

-

10/12-bit
100ksps

ADC

CLOCK
CIRCUIT

PGA

VREF

 12-Bit
 DAC

TEMP
SENSOR

VOLTAGE
COMPARATORS

ANALOG PERIPHERALS
Port 0

Port 1

Port 2

Port 3

C
R

O
S

S
B

A
R

DIGITAL I/O

HIGH-SPEED CONTROLLER CORE

DEBUG
CIRCUITRY

22
INTERRUPTS

8051 CPU
(25MIPS)

 12-Bit
 DAC

+

-

8-bit
500ksps

ADC
Port 4

Port 5

Port 6

Port 7

E
xt

er
na

l M
em

or
y

In
te

rfa
ce

100 pin64 pin

PGA

UART0

SMBus

SPI Bus

PCA

Timer 0

Timer 1

Timer 2

Timer 3

Timer 4

UART1

A
M

U
X

A
M

U
X

Silicon Labs’
C8051F020 is
a fully
integrated
mixed-signal
System-on-a-
Chip micro-
controller

Figure 2.2 System Overview of the C8051F02x Family

 Chapter 2 Introduction to Silicon Labs’ C8051F020 25

Peak Throughput 25 MIPS
FLASH Program Memory 64K
On-chip Data RAM 4352 bytes
Full-duplex UARTS x 2
16-bit Timers x 5
Digital I/O Ports 64 pins
12-bit 100ksps ADC 8 channels
8-bit 500ksps ADC 8 channels
DAC Resolution 12 bits
DAC Outputs x 2
Analog Comparators x 2
Interrupts Two levels
Programmable Counter Arrays
(PCA)

Table 2.2 C8051F020 Features

All analog and
digital
peripherals are
enabled
/disabled and
configured by
user software

P0, P1,
P2, P3
Latches

JTAG
Logic

TCK
TMS
TDI
TDO

UART1

SMBus

SPI Bus

PCA

64kbyte
FLASH

256 byte
RAM

VDD
Monitor

SFR Bus

8
0
5
1

C
o
r
e

Timers 0,
1, 2, 4

Timer 3/
RTC

P0
 Drv

C
R
O
S
S
B
A
R

Port I/O
Config.

Crossbar
Config.

AV+
AV+

VDD
VDD
VDD
DGND
DGND
DGND

AGND
AGND

Reset/RST

XTAL1
XTAL2

External
Oscillator

Circuit System
 Clock

Internal
Oscillator

Digital Power

Analog Power

Debug HW

Boundary Scan

4kbyte
RAM

P2.0

P2.7

P1.0/AIN1.0

P1.7/AIN1.7

P0.0

P0.7

P1
 Drv

P2
 Drv

Data Bus

Address Bus

Bus Control
DAC1

DAC1
(12-Bit)

VREF

DAC0
(12-Bit)

ADC
100ksps
(12-Bit)

A
M
U
X

AIN0.0
AIN0.1
AIN0.2
AIN0.3
AIN0.4
AIN0.5
AIN0.6
AIN0.7

DAC0

CP0+

CP0-

CP1+

CP1-

VREF

TEMP
SENSOR

UART0

P3.0

P3.7

P3
 Drv

8:1

MONEN WDT

VREFD

VREF0

Prog
Gain

CP0

CP1

C
T
L

P4 Latch

D
a
t
a

P7 Latch

A
d
d
r

P5 Latch

P6 Latch

P7.0/D0

P7.7/D7

P7
DRV

P5.0/A8

P5.7/A15

P5
DRV

P6.0/A0

P6.7/A7

P6
DRV

P4
DRV P4.5/ALE

P4.6/RD
P4.7/WR

P4.0

P4.4

External Data Memory Bus

Prog
Gain

ADC
500ksps
(8-Bit)

A
M
U
X

VREF1

Figure 2.3 Block Diagram of C8051F020

 26 Chapter 2 Introduction to Silicon Labs’ C8051F020

All analog and digital peripherals are enabled/disabled and configured by
user software. The FLASH memory can be reprogrammed even in-
circuit, providing non-volatile data storage, and also allows field
upgrades of the 8051 firmware.

2.3 Memory Organization
The memory organization of the CIP-51 System Controller is similar to
that of a standard 8051 (Figure 1.2). There are two separate memory
spaces: program memory and data memory. The CIP-51 memory
organization is shown in Figure 2.4. Program and data memory share the
same address space but are accessed via different instruction types.

PROGRAM/DATA MEMORY
(FLASH)

(Direct and Indirect
Addressing)

0x00

0x7F

Upper 128 RAM
(Indirect Addressing

Only)0x80

0xFF Special Function
Register's

(Direct Addressing Only)

DATA MEMORY (RAM)

General Purpose
Registers

0x1F
0x20
0x2F

Bit Addressable

Lower 128 RAM
(Direct and Indirect
Addressing)

0x30

INTERNAL DATA ADDRESS SPACE

EXTERNAL DATA ADDRESS SPACE

XRAM - 4096 Bytes
(accessable using MOVX

instruction)0x0000

0x0FFF

Off-chip XRAM space

0x1000

0xFFFF

FLASH

(In-System
Programmable in 512

Byte Sectors)

0x0000

0xFFFF
RESERVED

0xFE00
0xFDFF

Scrachpad Memory
(DATA only)

0x1007F
0x10000

The memory
organisation of
the CIP-51
System
Controller is
similar to that
of a standard
8051

Figure 2.4 C8051F020 Memory Map

 Chapter 2 Introduction to Silicon Labs’ C8051F020 27

Program Memory
The C8051F020’s program memory consists of 65536 bytes of FLASH,
of which 512 bytes, from addresses 0xFE00 to 0xFFFF, are reserved for
factory use. There is also a single 128 byte sector at address 0x10000 to
0x1007F (Scratchpad Memory), which is useful as a small table for
software program constants.

There are two
separate
memory
spaces:
program
memory and
data memory

Data Memory
The C8051F020 data memory has both internal and external address
spaces. The internal data memory consists of 256 bytes of RAM. The
Special Function Registers (SFR) are accessed anytime the direct
addressing mode is used to access the upper 128 bytes of memory
locations from 0x80 to 0xFF, while the general purpose RAM are
accessed when indirect addressing is used (refer to Chapter 3 for
addressing modes). The first 32 bytes of the internal data memory are
addressable as four banks of 8 general purpose registers, and the next
16 bytes are bit-addressable or byte-addressable.

The external data memory has a 64K address space, with an on-chip 4K
byte RAM block. An external memory interface (EMIF) is used to access
the external data memory. The EMIF is configured by programming the
EMI0CN and EMI0CF SFRs. The external data memory address space
can be mapped to on-chip memory only, off-chip memory only, or a
combination of the two (addresses up to 4K directed to on-chip, above
4K directed to EMIF). The EMIF is also capable of acting in multiplexed
mode or non-multiplexed mode, depending on the state of the EMD2
(EMI0CF.4) bit.

Stack
The programmer stack can be located anywhere in the 256 byte internal
data memory. A reset initializes the stack pointer (SP) to location 0x07;
therefore, the first value pushed on the stack is placed at location 0x08,
which is also the first register (R0) of register bank 1. Thus, if more than
one register bank is to be used, the stack should be initialized to a
location in the data memory not being used for data storage. The stack
depth can extend up to 256 bytes.

 28 Chapter 2 Introduction to Silicon Labs’ C8051F020

Special Function Registers

F8 SPI0CN PCA0H PCA0CPH0 PCA0CPH1 PCA0CPH2 PCA0CPH3 PCA0CPH4 WDTCN

F0 B SCON1 SBUF1 SADDR1 TL4 TH4 EIP1 EIP2

E8 ADC0CN PCA0L PCA0CPL0 PCA0CPL1 PCA0CPL2 PCA0CPL3 PCA0CPL4 RSTSRC

E0 ACC XBR0 XBR1 XBR2 RCAP4L RCAP4H EIE1 EIE2

D8 PCA0CN PCA0MD PCA0M0 PCA0CPM1 PCA0CPM2 PCA0CPM3 PCA0CPM4

D0 PSW REF0CN DAC0L DAC0H DAC0CN DAC1L DAC1H DAC1CN

C8 T2CON T4CON RCAP2L RCAP2H TL2 TH2 SMB0CR

C0 SMB0CN SMB0STA SMB0DAT SMB0ADR ADC0GTL ADC0GTH ADC0LTL ADC0LTH

B8 IP SADEN0 AMX0CF AMX0SL ADC0CF P1MDIN ADC0L ADC0H

B0 P3 OSCXCN OSCICN P74OUT FLSCL FLACL

A8 IE SADDR0 ADC1CN ADC1CF AMX1SL P3IF SADEN1 EMI0CN

A0 P2 EMI0TC EMI0CF P0MDOUT P1MDOUT P2MDOUT P3MDOUT

98 SCON0 SBUF0 SPI0CFG SPIODAT ADC1 SPI0CKR CPT0CN CPT1CN

90 P1 TMR3CN TMR3RLL TMR3RLH TMR3L TMR3H P7

88 TCON TMOD TL0 TL1 TH0 TH1 CKCON PSCTL

80 P0 SP DPL DPH P4 P5 P6 PCON

0(8)
Bit

addressable

1(9) 2(A) 3(B) 4(C) 5(D) 6(E) 7(F)

Table 2.3 SFR Memory Map

The SFRs provide control and data exchange with the C8051F020’s
resources and peripherals. The C8051F020 duplicates the SFRs found
in a typical 8051 implementation as well as implements additional SFRs
which are used to configure and access the sub-systems unique to the
microcontroller. This allows the addition of new functionalities while
retaining compatibility with the MCS-51™ instruction set. Table 2.3 lists
the SFRs implemented in the CIP-51 microcontroller.

C8051F020
duplicates the
SFRs of 8051
and
implements
additional
SFRs used to
configure and
access the
microcontroller
sub-systems

The SFR registers are accessed anytime the direct addressing mode is
used to access memory locations from 0x80 to 0xFF. The SFRs with
addresses ending in 0x0 or 0x8 (e.g. P0, TCON, P1, SCON, IE etc.) are
bit-addressable as well as byte-addressable. All other SFRs are byte-
addressable only. Unoccupied addresses in the SFR space are reserved
for future use. Accessing these areas will have an indeterminate effect
and should be avoided.

 Chapter 2 Introduction to Silicon Labs’ C8051F020 29

2.4 I/O Ports and Crossbar
The standard 8051 Ports (0, 1, 2, and 3) are available on the
C8051F020, as well as 4 additional ports (4, 5, 6, and 7) for a total of 64
general purpose port I/O pins. The port I/O behaves like the standard
8051 with a few enhancements. Access is possible through reading and
writing the corresponding Port Data registers.

C8051F020
has a total of
64 general
purpose port
I/O pins

All port pins are 5 V tolerant, and support configurable Push-Pull or
Open-Drain output modes and weak pull-ups. In addition, the pins on
Port 1 can be used as Analog Inputs to ADC1. A block diagram of the
port I/O cell is shown in Figure 2.5.

DGND

/PORT-OUTENABLE

PORT-OUTPUT

PUSH-PULL VDD VDD

/WEAK-PULLUP

(WEAK)

PORT
PAD

ANALOG INPUT

Analog Select
(Port 1 Only)

PORT-INPUT

Figure 2.5 Port I/O Cell Block Diagram

The four lower ports (P0-P3) can be used as General-Purpose I/O
(GPIO) pins or be assigned as inputs/outputs for the digital peripherals
by programming a Digital Crossbar (Figure 2.6). The lower ports are both
bit- and byte-addressable. The four upper ports (P4-P7) serve as byte-
addressable GPIO pins.

 30 Chapter 2 Introduction to Silicon Labs’ C8051F020

External
Pins

Digital
Crossbar

Priority
Decoder

SMBus

2

SPI
4

UART0

2

PCA

2

T0, T1,
T2, T2EX,
T4,T4EX

/INT0,
/INT1

P1.0

P1.7

P2.0

P2.7

P0.0

P0.7

Highest
Priority

Lowest
Priority

8

8

Comptr.
Outputs

(In
te

rn
al

 D
ig

ita
l S

ig
na

ls
)

Highest
Priority

Lowest
Priority

UART1

/SYSCLK
CNVSTR

6

2

P3.0

P3.7

8

8

P0MDOUT, P1MDOUT,
P2MDOUT, P3MDOUT

Registers

XBR0, XBR1,
XBR2, P1MDIN

Registers

P1
I/O

Cells

P3
I/O

Cells

P0
I/O

Cells

P2
I/O

Cells

8

Port
Latches

P0

P1

P2

8

8

8

P3

8

(P2.0-P2.7)

(P1.0-P1.7)

(P0.0-P0.7)

(P3.0-P3.7)

To
ADC1
Input

To External
Memory
Interface
(EMIF)

Figure 2.6 Block Diagram of Lower Port I/O (P0 to P3)

The Digital Crossbar is essentially a large digital switching network that
allows mapping of internal digital peripherals to the pins on Ports 0 to 3.
The on-chip counter/timers, serial buses, HW interrupts, ADC Start of
Conversion input, comparator outputs, and other digital signals in the
controller can be configured to appear on the I/O pins by configuring the
Crossbar Control registers XBR0, XBR1 and XBR2. This allows the
system designer to select the exact mix of GPIO and digital resources
needed for the particular application, limited only by the number of pins
available. Unlike microcontrollers with standard multiplexed digital I/O, all
combinations of functions are supported.

The digital
crossbar
allows the
designer the
flexibility to
select the
exact mix of
GPIO and
digital
resources for
an application.

The digital peripherals are assigned Port pins in a priority order, starting
with P0.0 and continue through P3.7 if necessary. UART0 has the
highest priority and CNVSTR has the lowest priority (refer to Chapter 5
for examples on configuring the crossbar).

 Chapter 2 Introduction to Silicon Labs’ C8051F020 31

2.5 12-Bit Analog to Digital Converter
The C8051F020 has an on-chip 12-bit successive approximation register
(SAR) Analog to Digital Converter (ADC0) with a 9-channel input
multiplexer and programmable gain amplifier (Figure 2.7). A voltage
reference is required for ADC0 to operate and is selected between the
DAC0 output and an external VREF pin.

C8051F020
has two on-
chip Analog to
Digital
converters.

The ADC is configured via its associated Special Function Registers.
One input channel is tied to an internal temperature sensor, while the
other eight channels are available externally. Each pair of the eight
external input channels can be setup as either two single-ended inputs or
a single differential input.

 12-Bit
 SAR

 ADC
12+

-

TEMP
SENSOR

+

-

+

-

+

-

9-to-1
AMUX
(SE or
DIFF)

+

-

X

AIN0.0

AIN0.1

AIN0.2

AIN0.3

AIN0.4

AIN0.5

AIN0.6

AIN0.7

AV+

Programmable Gain
Amplifier

Analog Multiplexer
Window Compare

Logic

ADC Data
Registers

Window
Compare
Interrupt

Conversion
Complete
Interrupt

Configuration, Control, and Data
Registers

Start
Conversion Timer 3 Overflow

Timer 2 Overflow

Write to AD0BUSY

CNVSTR

External VREF
Pin

DAC0 Output

VREF

AGND

Figure 2.7 12-Bit ADC Block Diagram

A programmable gain amplifier follows the analog multiplexer. The gain
can be set in software from 0.5 to 16 in powers of 2. The gain stage is
useful when different ADC input channels have widely varied input
voltage signals, or when "zooming in" on a signal with a large DC offset
(in differential mode, a DAC could be used to provide the DC offset).

Conversions can be started in four ways:

1) Software command,

2) Overflow of Timer 2,

 32 Chapter 2 Introduction to Silicon Labs’ C8051F020

3) Overflow of Timer 3, or

4) External signal input (CNVSTR).

Conversion completions are indicated by a status bit and an interrupt (if
enabled). The resulting 12 bit data word is latched into two SFRs upon
completion of a conversion. The data can be right or left justified in these
registers (since ADC output is 12 bits but the two SFRs are 16 bits)
under software control.

The Window Compare registers for the ADC data can be configured to
interrupt the controller when ADC data is within or outside of a specified
range. The ADC can monitor a key voltage continuously in background
mode, but not interrupt the controller unless the converted data is within
the specified window.

2.6 8-Bit Analog to Digital Converter
The C8051F020 has an on-board 8-bit SAR Analog to Digital Converter
(ADC1) with an 8-channel input multiplexer and programmable gain
amplifier (Figure 2.8). Eight input pins are available for measurement.
The ADC is again configurable via the SFRs. The ADC1 voltage
reference is selected between the analog power supply (AV+) and an
external VREF pin.

A programmable gain amplifier follows the analog multiplexer. The gain
can be set in software to 0.5, 1, 2, or 4. Just as with ADC0, the
conversion scheduling system allows ADC1 conversions to be initiated
by software commands, timer overflows or an external input signal.
ADC1 conversions may also be synchronized with ADC0 software-
commanded conversions. Conversion completions are indicated by a
status bit and an interrupt (if enabled), and the resulting 8 bit data word is
latched into a SFR upon completion.

2.7 Digital to Analog Converters and Comparators
The C8051F020 has two 12-bit Digital to Analog Converters, DAC0 and
DAC1. There are also two analog comparators on chip, CP0 and CP1,
as shown in Figure 2.9. The DAC voltage reference is supplied via the
dedicated VREFD input pin.

 Chapter 2 Introduction to Silicon Labs’ C8051F020 33

+
-

AV+

8
8-to-1
AMUX X

AIN1.0

AIN1.1

AIN1.2

AIN1.3

AIN1.4

AIN1.5

AIN1.6

AIN1.7

Configuration, Control, and Data Registers

Programmable Gain
Amplifier

Analog Multiplexer

8-Bit
SAR

ADC

Start Conversion
Timer 3 Overflow

Timer 2 Overflow

Write to AD1BUSY

CNVSTR Input

Write to AD0BUSY
(synchronized with
ADC0)

ADC Data
Register

Conversion
Complete
Interrupt

External VREF
Pin

AV+

VREF

Figure 2.8 8-Bit ADC Block Diagram

The DAC output is updated each time when there is a software write
(DACxH), or a Timer 2, 3, or 4 overflow (Figure 2.10). The DACs are
especially useful as references for the comparators or offsets for the
differential inputs of the ADC.

The comparators have software programmable hysteresis and can
generate an interrupt on its rising edge, falling edge, or both. The
comparators' output state can also be polled in software and
programmed to appear on the lower port I/O pins via the Crossbar.

More information on programming applications using the ADCs and
DACs will be presented in Chapter 9.

2.8 Voltage Reference
A voltage reference has to be used when operating the ADC and DAC.
The C8051F020’s three voltage reference input pins allow each ADC
and the two DACs to reference an external voltage reference or the on-
chip voltage reference output. ADC0 may also reference the DAC0
output internally, and ADC1 may reference the analog power supply
voltage (AV+), via the VREF multiplexers shown in Figure 2.11.

 34 Chapter 2 Introduction to Silicon Labs’ C8051F020

+

- CP1

CP1+

CP1-

DAC0

DAC1

REF

REF

CP0

CIP-51
and

Interrupt
Handler

CP1

 DAC0

 DAC1

CP0+

CP0-

CP1

CP0
(Port I/O)

(Port I/O)

+

-
CP0

SFR's

(Data
and

Cntrl)

CROSSBAR

Figure 2.9 Comparator and DAC Block Diagram

The internal voltage reference circuit consists of a 1.2V bandgap voltage
reference generator and a gain-of-two output buffer amplifier, i.e. VREF
is 2.4 V. The internal reference may be routed via the VREF pin to
external system components or to the voltage reference input pins
shown in Figure 2.11. Bypass capacitors of 0.1 µF and 4.7 µF are
recommended from the VREF pin to AGND.

 Chapter 2 Introduction to Silicon Labs’ C8051F020 35

 DAC0

AV+

12

AGND

8

8

REF

DAC0

D
AC

0C
N

DAC0EN

DAC0MD1
DAC0MD0
DAC0DF2
DAC0DF1
DAC0DF0

D
A

C
0H

D
A

C
0L

D
ig

. M
U

X

La
tc

h
La

tc
h8

8

 DAC1

AV+

12

AGND

8

8

REF

DAC1

D
A

C
1C

N

DAC1EN

DAC1MD1
DAC1MD0
DAC1DF2
DAC1DF1
DAC1DF0

D
A

C
1H

D
A

C
1L

D
ig

. M
U

X

La
tc

h
La

tc
h8

8

D
A

C
0H

Ti
m

er
 3

Ti
m

er
 4

Ti
m

er
 2

D
A

C
1H

Ti
m

er
 3

Ti
m

er
 4

Ti
m

er
 2

Figure 2.10 DAC Block Diagram

The Reference Control Register, REF0CN, enables/disables the internal
reference generator and selects the reference inputs for ADC0 and
ADC1 (Table 2.4).

The VREF jumper block J22 on the C8051F020 development board
(Appendix A. Figure A1-1, A1-2) is used to connect the internal voltage
reference to any (or all) of the voltage reference inputs. Install shorting
block on J22 pins:

 1-2 to connect VREF to VREFD

 3-4 to connect VREF to VREF0

 5-6 to connect VREF to VREF1

 36 Chapter 2 Introduction to Silicon Labs’ C8051F020

Recommended Bypass
Capacitors

x2
VREF

DAC0

DAC1

Ref
VREFD

AV+
ADC1

ADC0

VREF1

Ref

Ref
1

0

0

1

VREF0

4.7µF 0.1µF

External
Voltage

Reference
Circuit

R1

VDD

DGND

REF0CN

R
E

FB
E

B
IA

S
E

TE
M

PE
A

D
1V

R
S

A
D

0V
R

S

REFBE

BIASE

Bias to
ADCs,
DACs

1.2V
Band-Gap

EN

Figure 2.11 Voltage Reference Functional Block Diagram

Example: MOV REF0CN,#00000011B

This enables the use of the ADC or DAC, and the internal voltage
reference. The appropriate jumpers have to be set on the development
board to connect the internal voltage reference to the ADC or DAC
voltage reference inputs.

In summary, the benefits of a highly integrated microcontroller include:

1) More efficient circuit implementation and reducing board space

2) Higher system reliability

3) Cost effective

 Chapter 2 Introduction to Silicon Labs’ C8051F020 37

Bit Symbol Description
7-5 - Unused. Read=000b; Write=Don’t care.

4 AD0VRS
ADC0 Voltage Reference Select
0: ADC0 voltage reference from VREF0 pin.
1: ADC0 voltage reference from DAC0 output.

3 AD1VRS
ADC1 Voltage Reference Select
0: ADC1 voltage reference from VREF1 pin.
1: ADC1 voltage reference from AV+

2 TEMPE
Temperature Sensor Enable Bit
0: Internal Temperature Sensor Off.
1: Internal Temperature Sensor On.

1 BIASE
ADC/DAC Bias Generator Enable Bit
(Must be ‘1’ if using ADC or DAC)
0: Internal Bias Generator Off.
1: Internal Bias Generator On.

0 REFBE
Internal Reference Buffer Enable Bit
0: Internal Reference Buffer Off.
1: Internal Reference Buffer On. Internal voltage
 reference is driven on the VREF pin.

Table 2.4 REF0CN: Reference Control Register

 38 Chapter 2 Introduction to Silicon Labs’ C8051F020

2.9 Tutorial Questions

1. Why is the Silicon Labs mixed-signal system chip, which uses
CIP-51, has a faster throughput than the MCS-51TM?

2. Give examples of analogue and digital components which are
incorporated in the Silicon Labs C8051F020.

3. The Silicon Labs target board allows a program to be written and
tested in its IDE (Integrated Development Environment)
environment. Once tested successfully, the program can be
downloaded into the memory and be executed from there. Name
the memory involved when the downloading procedure takes
place.

4. Which of the 4 ports in the Silicon Labs target board can be used
to generate the GPI/O or input/outputs for some digital peripheral?

5. A voltage reference needs to be connected to the DAC (DAC0 or
DAC1) before it is fully operational. If an internal voltage reference
generator is to be used in this case, show the necessary steps
(hardware and software means) involved in order to enable the
above connection.

3

Instruction Set

3.0 Introduction 40
3.1 Addressing Modes 40

Register Addressing, Direct Addressing, Indirect Addressing,
Immediate Constant Addressing, Relative Addressing,
Absolute Addressing, Long Addressing, Indexed Addressing

3.2 Instruction Types 43
Arithmetic Operations, Logical Operations, Data Transfer
Instructions, Boolean Variable Instructions, Program
Branching Instructions

3.3 Tutorial Questions 69

 40 Chapter 3 Instruction Set

3.0 Introduction
A computer instruction is made up of an operation code (op-code)
followed by either zero, one or two bytes of operands information. The
op-code identifies the type of operation to be performed while the
operands identify the source and destination of the data. The operand
can be the data itself, a CPU register, a memory location or an I/O port.
If the instruction is associated with more than one operand, the format is
always:

 Instruction Destination, Source

3.1 Addressing Modes
Eight modes of addressing are available with C8051F020. The different
addressing modes, shown in Table 3.1, determine how the operand byte
is selected. Each addressing mode is discussed in detail below.

Addressing Modes Instruction
Register MOV A, B
Direct MOV 30H,A
Indirect ADD A,@R0
Immediate Constant ADD A,#80H
Relative* SJMP AHEAD
Absolute* AJMP BACK
Long* LJMP FAR_AHEAD
Indexed MOVC A,@A+PC

 * Relate to Program Branching Instruction
Table 3.1 Addressing Modes

Register Addressing
The register addressing instruction involves information transfer between
registers.

Example: MOV R0,A

 Chapter 3 Instruction Set 41

The instruction above transfers the accumulator content into the R0
register, of which its related Register Bank (Bank 0, 1, 2, and 3) must
have been specified earlier.

Direct Addressing
The instruction allows you to specify the operand by giving its actual
memory address (in Hexadecimal) or by giving its abbreviated name
(e.g. P3).

Example:
 MOV A, P3 ;transfer the contents of
 ;Port 3 to the accumulator
 MOV A, 20H ;transfer the contents of RAM
 ;location 20H to the
 ;accumulator

Indirect Addressing
This mode uses a pointer to hold the effective address of the operand.
However only registers R0, R1 and DPTR can be used as the pointer
registers. The R0 and R1 registers can hold an 8-bit address whereas
DPTR can hold a 16-bit address.
Example:

 MOV @R0,A ;store the content of
 ;accumulator into the memory
 ;location pointed to by
 ;register R0 e.g. R0 has the
 ;8-bit address of 60H

 MOVX A,@DPTR ;transfer the contents from
 ;the external memory location
 ;pointed to by DPTR, into the
 ;accumulator e.g. DPTR has a
 ;16-bit address of 1234H

 42 Chapter 3 Instruction Set

Immediate Constant Addressing
This mode of addressing uses either an 8- or 16-bit constant value as the
source operand. This constant is specified in the instruction, rather than
in a register or a memory location. The destination register should hold
the same data size which is specified by the source operand.

Example:

ADD A,#30H ;Add 8-bit value of 30H to

;the accumulator register
;which is an 8-bit register

MOV DPTR,#FE00H ;move 16-bit data constant of

;FE00 into the 16-bit Data
;Pointer Register

Relative Addressing
This mode of addressing is used with some type of jump instructions like
SJMP (short jump) and conditional jumps like JNZ. This instruction
transfers control from one part of a program to another. The transfer
control must be within -128 and +127 bytes from the instruction address.
Example:

SJMP LOC1 ;Once this instruction is
;executed, the program will
;jump to address labeled LOC1
;which must be at a distance
;of an 8-bit offset from the
;current instruction address

Absolute Addressing
Two instructions associated with this mode of addressing are ACALL and
AJMP instructions. This is a 2-byte instruction where the absolute
address is specified by a label. The branch address must be within the
current 2K byte page of program memory.

Example:

ACALL ARRAY

 Chapter 3 Instruction Set 43

Long Addressing
This mode of addressing is used with the LCALL and LJMP instructions.
It is a 3-byte instruction and the last 2 bytes specify a 16-bit destination
location where the program branches to. It allows use of the full 64K
code space. The program will always branch to the same location
irrespective of where the program starts.

Example:

LCALL TABLE ;TABLE address (of 16-bits) is
;specified in the instruction

Indexed Addressing
The Indexed addressing is useful when there is a need to retrieve data
from a look-up table (LUT). A 16-bit register (data pointer) holds the base
address and the accumulator holds an 8-bit displacement or index value.
The sum of these two registers forms the effective address for a JMP or
MOVC instruction.

Example:

 MOV A,08H
 MOV DPTR,#1F00H
 MOVC A,@A+DPTR

After the execution of the above instructions, the program will branch to
address 1F08H (1F00+08) and transfer into the accumulator a data byte
retrieved from that location (from the look-up table).

3.2 Instruction Types
The C8051F020 instructions are divided into five functional groups:

1) Arithmetic Operations

2) Logical Operations

3) Data Transfer Operations

4) Boolean Variable Operations

5) Program Branching Operations

 44 Chapter 3 Instruction Set

Arithmetic Operations
With arithmetic instructions, the C8051F020 CPU has no special
knowledge of the data format, e.g. signed binary, unsigned binary, binary
coded decimal, ASCII, etc. Therefore, the appropriate status bits in the
PSW are set when specific conditions are met to manage the different
data formats. Table 3.2 lists the arithmetic instructions associated with
the C8051F020 MCU.

Mnemonic Description
ADD A, Rn A = A + [Rn]
ADD A, direct A = A + [direct memory]
ADD A,@Ri A = A + [memory pointed to by Ri]
ADD A,#data A = A + immediate data
ADDC A,Rn A = A + [Rn] + CY
ADDC A, direct A = A + [direct memory] + CY
ADDC A,@Ri A = A + [memory pointed to by Ri] + CY
ADDC A,#data A = A + immediate data + CY
SUBB A,Rn A = A - [Rn] - CY
SUBB A, direct A = A - [direct memory] - CY
SUBB A,@Ri A = A - [@Ri] - CY
SUBB A,#data A = A - immediate data - CY
INC A A = A + 1
INC Rn [Rn] = [Rn] + 1
INC direct [direct] = [direct] + 1
INC @Ri [@Ri] = [@Ri] + 1
DEC A A = A - 1
DEC Rn [Rn] = [Rn] - 1
DEC direct [direct] = [direct] - 1
DEC @Ri [@Ri] = [@Ri] - 1
MUL AB Multiply A & B
DIV AB Divide A by B
DA A Decimal adjust A

Table 3.2 List of Arithmetic Instructions

Note: [@Ri] means contents of memory location pointed to by Ri
register

 Chapter 3 Instruction Set 45

ADD A,<source-byte> and ADDC A,<source-byte>
ADD adds the data byte specified by the source operand to the
accumulator, leaving the result in the accumulator.

ADDC adds the data byte specified by the source operand, the carry flag
and the accumulator contents, leaving the result in the accumulator.

Operation of both the instructions, ADD and ADDC, can affect the carry
flag (CY), auxiliary carry flag (AC) and the overflow flag (OV).

CY=1 if there is a carryout from bit 7; cleared otherwise

AC =1 if there is a carryout from the lower 4-bit of A i.e. from bit 3;
 cleared otherwise

OV=1 if the signed result cannot be expressed within the number of
 bits in the destination operand; cleared otherwise

SUBB A,<source-byte>
SUBB subtracts the specified data byte and the carry flag together from
the accumulator, leaving the result in the accumulator.

CY=1 if a borrow is needed for bit 7; cleared otherwise

AC =1 if a borrow is needed for bit 3, cleared otherwise

OV=1 if a borrow is needed into bit 6, but not into bit 7, or into bit 7, but
not into bit 6.

Example: The accumulator holds 0C1H (11000001B), Register1 holds
40H (01000000B) and the CY=1.The instruction,

 SUBB A, R1

 gives the value 70H (01110000B) in the accumulator, with the

CY=0 and AC=0 but OV=1.

Notice that the correct answer should be 71H (0C1H-50H). The
difference between this and the result given is due to the carry (or

 46 Chapter 3 Instruction Set

borrow) flag being set before the start of operation. So if the state of the
carry bit is unknown before the execution of the SUBB instruction, it must
be explicitly cleared by using CLR C instruction.

INC <byte>
Increments the data variable by 1. The instruction is used in register,
direct or register direct addressing modes.

Example: INC 6FH

If the internal RAM location 6FH contains 30H, then the instruction
increments this value, leaving 31H in location 6FH.
Example:

MOV R1, #5E
INC R1

 INC @R1

If R1=5E (01011110) and internal RAM location 5FH contains 20H, the
instructions will result in R1=5FH and internal RAM location 5FH to
increment by one to 21H.

DEC <byte>
The data variable is decremented by 1. The instruction is used in
accumulator, register, direct or register direct addressing modes. A data
of value 00H underflows to FFH after the operation. No flags are
affected.

INC DPTR
Increments the 16-bit data pointer by 1. DPTR is the only 16-bit register
that can be incremented.
Example: INC DPTR

The instruction adds one to the contents of DPTR directly.

 Chapter 3 Instruction Set 47

MUL AB

Multiplies A & B and the 16-bit result stored in [B15-8], [A7-0].

Multiplies the unsigned 8-bit integers in the accumulator and the B
register. The Low order byte of the 16-bit product will go to the
accumulator and the High order byte will go to the B register. If the
product is greater than 255 (FFH), the overflow flag is set; otherwise it is
cleared. The carry flag is always cleared.
Example: MUL AB

If ACC=85 (55H) and B=23 (17H), the instruction gives the product 1955
(07A3H), so B is now 07H and the accumulator is A3H. The overflow flag
is set and the carry flag is cleared.

DIV AB

Divides A by B. The integer part of the quotient is stored in A and the
remainder goes to the B register.

Example: DIV AB

If ACC=90 (5AH) and B=05(05H), the instruction leaves 18 (12H) in ACC
and the value 00 (00H) in B, since 90/5 = 18 (quotient) and 00
(remainder). Carry and OV are both cleared.
Note: If B contains 00H before the division operation, then the values

stored in ACC and B are undefined and an overflow flag is set.
The carry flag is cleared.

DA A
This is a decimal adjust instruction. It adjusts the 8-bit value in ACC
resulting from operations like ADD or ADDC and produces two 4-bit
digits (in packed Binary Coded Decimal (BCD) format). Effectively, this
instruction performs the decimal conversion by adding 00H, 06H, 60H or
66H to the accumulator, depending on the initial value of ACC and PSW.

If ACC bits A3-0 are greater than 9 (xxxx1010-xxxx1111), or if AC=1, then
a value 6 is added to the accumulator to produce a correct BCD digit in
the lower order nibble.

 48 Chapter 3 Instruction Set

If CY=1, because the high order bits A7-4 is now exceeding 9 (1010xxxx-
1111xxxx), then these high order bits will be increased by 6 to produce a
correct proper BCD in the high order nibble but not clear the carry.

Example:
MOV R0,#38H
MOV A,#80H
ADDC A
DA A

Before carrying out the above instruction, the accumulator value was
given as ACC=80H (10000000), which also represents BCD=80, R0=
38H (00111000) representing BCD=38, and the carry flag is cleared.

After the operation of ADDC, the result in the accumulator is ACC=B8H,
which is not a BCD value. In order to do a decimal adjustment to the
value, the DA instruction needs to be incorporated. Once DA operation is
carried out, the accumulator will result in ACC=18H, indicating
BCD=18.The carry flag is set, indicating that a decimal overflow occurred
(38+80=118).

Logical Operations
Logical instructions perform Boolean operations (AND, OR, XOR, and
NOT) on data bytes on a bit-by-bit basis. Table 3.3 lists the logical
instructions associated with the C8051F020.

ANL <dest-byte>,<source-byte>
This instruction performs the logical AND operation on the source and
destination operands and stores the result in the destination variable. No
flags are affected.
Example: ANL A,R2

If ACC=D3H (11010011) and R2=75H (01110101), the result of the
instruction is ACC=51H (01010001).
The following instruction is also useful when there is a need to mask a
byte.
Example: ANL P1,#10111001B

 Chapter 3 Instruction Set 49

This instruction clears bits 6, 2 and 1 of output Port 1.

Mnemonic Description
ANL A, Rn A = A & [Rn]
ANL A, direct A = A & [direct memory]
ANL A,@Ri A = A & [memory pointed to by Ri]
ANL A,#data A= A & immediate data
ANL direct,A [direct] = [direct] & A
ANL direct,#data [direct] = [direct] & immediate data
ORL A, Rn A = A OR [Rn]
ORL A, direct A = A OR [direct]
ORL A,@Ri A = A OR [@RI]
ORL A,#data A = A OR immediate data
ORL direct,A [direct] = [direct] OR A
ORL direct,#data [direct] = [direct] OR immediate data
XRL A, Rn A = A XOR [Rn]
XRL A, direct A = A XOR [direct memory]
XRL A,@Ri A = A XOR [@Ri]
XRL A,#data A = A XOR immediate data
XRL direct,A [direct] = [direct] XOR A
XRL direct,#data [direct] = [direct] XOR immediate data
CLR A Clear A
CPL A Complement A
RL A Rotate A left
RLC A Rotate A left (through C)
RR A Rotate A right
RRC A Rotate A right (through C)
SWAP A Swap nibbles

Table 3.3 List of Logical Instructions

 50 Chapter 3 Instruction Set

ORL <dest-byte>,<source-byte>
This instruction performs the logical OR operation on the source and
destination operands and stores the result in the destination variable. No
flags are affected.
Example: ORL A,R2

If ACC=D3H (11010011) and R2=75H (01110101), the result of the
instruction is ACC=F7H (11110111).
Example: ORL P1,#11000010B

This instruction sets bits 7, 6, and 1 of output Port 1.

XRL <dest-byte>,<source-byte>
This instruction performs the logical XOR (Exclusive OR) operation on
the source and destination operands and stores the result in the
destination variable. No flags are affected.
Example: XRL A,R0

If ACC=C3H (11000011) and R0=AAH (10101010), then the instruction
results in ACC=69H (01101001).
Example: XRL P1,#00110001

This instruction complements bits 5, 4, and 0 of output Port 1.

CLR A
This instruction clears the accumulator (all bits set to 0). No flags are
affected.
Example: CLR A

If ACC=C3H, then the instruction results in ACC=00H.

 Chapter 3 Instruction Set 51

CPL A
This instruction logically complements each bit of the accumulator (one’s
complement). No flags are affected.
Example: CPL A

If ACC=C3H (11000011), then the instruction results in ACC=3CH
(00111100).

RL A
The eight bits in the accumulator are rotated one bit to the left. Bit 7 is
rotated into the bit 0 position. No flags are affected.
Example: RL A

If ACC=C3H (11000011), then the instruction results in ACC=87H
(10000111) with the carry unaffected.

RLC A
The instruction rotates the accumulator contents one bit to the left
through the carry flag. This means that the Bit 7 of the accumulator will
move into carry flag and the original value of the carry flag will move into
the Bit 0 position. No other flags are affected.
Example: RLC A

If ACC=C3H (11000011), and the carry flag is 1, the instruction results in
ACC=87H (10000111) with the carry flag set.

RR A
The eight bits in the accumulator are rotated one bit to the right. Bit 0 is
rotated into the bit 7 position. No flags are affected.
Example: RR A

 52 Chapter 3 Instruction Set

If ACC=C3H (11000011), then the instruction results in ACC=E1H
(11100001) with the carry unaffected.

RRC A

The instruction rotates the accumulator contents one bit to the right
through the carry flag. This means that the original value of carry flag will
move into Bit 7 of the accumulator and Bit 0 rotated into carry flag. No
other flags are affected.
Example: RRC A

If ACC=C3H (11000011), and the carry flag is 0, the instruction results in
ACC=61H (01100001) with the carry flag set.

SWAP A

This instruction interchanges the low order 4-bit nibbles (A3-0) with the
high order 4-bit nibbles (A7-4) of the ACC. The operation can also be
thought of as a 4-bit rotate instruction. No flags are affected.
Example: SWAP A

If ACC=C3H (11000011), then the instruction leaves ACC=3CH
(00111100).

Data Transfer Instructions
Data transfer instructions can be used to transfer data between an
internal RAM location and SFR location without going through the
accumulator. It is possible to transfer data between the internal and
external RAM by using indirect addressing. Table 3.4 presents the list of
data transfer instructions.
The upper 128 bytes of data RAM are accessed only by indirect
addressing and the SFRs are accessed only by direct addressing.

 Chapter 3 Instruction Set 53

Mnemonic Description
MOV @Ri, direct [@Ri] = [direct]
MOV @Ri, #data [@Ri] = immediate data
MOV DPTR, #data 16 [DPTR] = immediate data
MOVC A,@A+DPTR A = Code byte from [@A+DPTR]
MOVC A,@A+PC A = Code byte from [@A+PC]
MOVX A,@Ri A = Data byte from external ram [@Ri]
MOVX A,@DPTR A = Data byte from external ram [@DPTR]
MOVX @Ri, A External[@Ri] = A
MOVX @DPTR,A External[@DPTR] = A
PUSH direct Push into stack
POP direct Pop from stack
XCH A,Rn A = [Rn], [Rn] = A
XCH A, direct A = [direct], [direct] = A
XCH A, @Ri A = [@Rn], [@Rn] = A
XCHD A,@Ri Exchange low order digits

Table 3.4 List of Data Transfer Instructions

MOV <dest-byte>,<source-byte>
This instruction moves the source byte into the destination location. The
source byte is not affected, neither are any other registers or flags.

Example: MOV R1,#60 ;R1=60H
 MOV A,@R1 ;A=[60H]
 MOV R2,#61 ;R2=61H
 ADD A,@R2 ;A=A+[61H]
 MOV R7,A ;R7=A

If internal RAM locations 60H=10H, and 61H=20H, then after the
operations of the above instructions R7=A=30H. The data contents of
memory locations 60H and 61H remain intact.

MOV DPTR, #data 16

This instruction loads the data pointer with the 16-bit constant and no
flags are affected.

 54 Chapter 3 Instruction Set

Example: MOV DPTR,#1032

This instruction loads the value 1032H into the data pointer, i.e.
DPH=10H and DPL=32H.

MOVC A,@A + <base-reg>
This instruction moves a code byte from program memory into ACC. The
effective address of the byte fetched is formed by adding the original 8-
bit accumulator contents and the contents of the base register, which is
either the data pointer (DPTR) or Program Counter (PC). 16-bit addition
is performed and no flags are affected.
The instruction is useful in reading the look-up tables in the program
memory. If the PC is used, it is incremented to the address of the
following instruction before being added to the ACC.
Example: CLR A

LOC1: INC A
 MOVC A,@A + PC
 RET
 Look_up DB 10H
 DB 20H

 DB 30H
 DB 40H

The subroutine takes the value in the accumulator to 1 of 4 values
defined by the DB (Define Byte) directive. After the operation of the
subroutine it returns ACC=20H.

MOVX <dest-byte>,<source-byte>
This instruction transfers data between ACC and a byte of external data
memory. There are two forms of this instruction, the only difference
between them is whether to use an 8-bit or 16-bit indirect addressing
mode to access the external data RAM.

The 8-bit form of the MOVX instruction uses the EMI0CN SFR to
determine the upper 8 bits of the effective address to be accessed and
the contents of R0 or R1 to determine the lower 8 bits of the effective
address to be accessed.

 Chapter 3 Instruction Set 55

Example: MOV EMI0CN,#10H ;load high byte of
 ;address into EMI0CN

 MOV R0,#34H ;load low byte of
 ;address into R0(or R1)

 MOVX A,@R0 ;load contents of 1034H
 ;into ACC

The 16-bit form of the MOVX instruction accesses the memory location
pointed to by the contents of the DPTR register.

Example: MOV DPTR,#1034H ;load DPTR with 16 bit
 ;address to read
 ;(1034H)

 MOVX A,@DPTR ;load contents of 1034H
 ;into ACC

The above example uses the 16-bit immediate MOV DPTR instruction to
set the contents of DPTR. Alternately, the DPTR can be accessed
through the SFR registers DPH, which contains the upper 8 bits of
DPTR, and DPL, which contains the lower 8 bits of DPTR.

PUSH Direct
This instruction increments the stack pointer (SP) by 1. The contents of
Direct, which is an internal memory location or a SFR, are copied into the
internal RAM location addressed by the stack pointer. No flags are
affected.

Example: PUSH 22H
 PUSH 23H

Initially the SP points to memory location 4FH and the contents of
memory locations 22H and 23H are 11H and 12H respectively. After the
above instructions, SP=51H, and the internal RAM locations 50H and
51H will store 11H and 12H respectively.

POP Direct
This instruction reads the contents of the internal RAM location
addressed by the stack pointer (SP) and decrements the stack pointer by

 56 Chapter 3 Instruction Set

1. The data read is then transferred to the Direct address which is an
internal memory or a SFR. No flags are affected.
Example: POP DPH
 POP DPL

If SP=51H originally and internal RAM locations 4FH, 50H and 51H
contain the values 30H, 11H and 12H respectively, the instructions
above leave SP=4FH and DPTR=1211H.
 POP SP

If the above line of instruction follows, then SP=30H. In this case, SP is
decremented to 4EH before being loaded with the value popped (30H).

XCH A,<byte>
This instruction swaps the contents of ACC with the contents of the
indicated data byte.
Example: XCH A,@R0

Suppose R0=2EH, ACC=F3H (11110011) and internal RAM location
2EH=76H (01110110). The result of the above instruction leaves RAM
location 2EH=F3H and ACC=76H.

XCHD A,@Ri
This instruction exchanges the low order nibble of ACC (bits 0-3), with
that of the internal RAM location pointed to by Ri register. The high order
nibbles (bits 7-4) of both the registers remain the same. No flags are
affected.
Example: XCHD A,@R0

If R0=2EH, ACC=76H (01110110) and internal RAM location 2EH=F3H
(11110011), the result of the instruction leaves RAM location 2EH=F6H
(11110110) and ACC=73H (01110011).

 Chapter 3 Instruction Set 57

Boolean Variable Instructions
The C8051F020 processor can perform single bit operations. The
operations include set, clear, as well as and, or and complement
instructions. Also included are bit–level moves or conditional jump
instructions. The available Boolean instructions are shown in Table 3.5.
All bit accesses use direct addressing.

Mnemonic Description
CLR C Clear C
CLR bit Clear direct bit
SETB C Set C
SETB bit Set direct bit
CPL C Complement c
CPL bit Complement direct bit
ANL C,bit AND bit with C
ANL C,/bit AND NOT bit with C
ORL C,bit OR bit with C
ORL C,/bit OR NOT bit with C
MOV C,bit MOV bit to C
MOV bit,C MOV C to bit
JC rel Jump if C set
JNC rel Jump if C not set
JB bit,rel Jump if specified bit set
JNB bit,rel Jump if specified bit not set
JBC bit,rel if specified bit set then clear it and jump

Table 3.5 List of Boolean Variable Instructions

CLR <bit>
This operation clears (reset to 0) the specified bit indicated in the
instruction. No other flags are affected. CLR instruction can operate on
the carry flag or any directly-addressable bit.
Example: CLR P2.7

 58 Chapter 3 Instruction Set

If Port 2 has been previously written with DCH (11011100), then the
operation leaves the port set to 5CH (01011100).

SETB <bit>
This operation sets the specified bit to 1. SETB instruction can operate
on the carry flag or any directly-addressable bit. No other flags are
affected.
Example: SETB C
 SETB P2.0

If the carry flag is cleared and the output Port 2 has the value of 24H
(00100100), then the result of the instructions sets the carry flag to 1 and
changes the Port 2 value to 25H (00100101).

CPL <bit>
This operation complements the bit indicated by the operand. No other
flags are affected. CPL instruction can operate on the carry flag or any
directly-addressable bit.
Example: CPL P2.1
 CPL P2.2

If Port 2 has the value of 53H (01010011) before the start of the
instructions, then after the execution of the instructions it leaves the port
set to 55H (01010101).

ANL C,<source-bit>
This instruction ANDs the bit addressed with the Carry bit and stores the
result in the Carry bit itself. If the source bit is a logical 0, then the
instruction clears the carry flag; else the carry flag is left in its original
value. If a slash (/) is used in the source operand bit, it means that the
logical complement of the addressed source bit is used, but the source
bit itself is not affected. No other flags are affected.

 Chapter 3 Instruction Set 59

Example: MOV C,P2.0 ;Load C with input pin
 ;state of P2.0
 ANL C,P2.7 ;AND carry flag with
 ;bit 7 of P2
 MOV P2.1,C ;move C to bit 1 of
 ;port 2
 ANL C,/OV ;AND with inverse of OV
 ;flag

If P2.0=1, P2.7=0 and OV=0 initially, then after the above instructions,
P2.1=0, CY=0 and the OV remains unchanged, i.e. OV=0.

ORL C,<source-bit>
This instruction ORs the bit addressed with the Carry bit and stores the
result in the Carry bit itself. It sets the carry flag if the source bit is a
logical 1; else the carry is left in its original value. If a slash (/) is used in
the source operand bit, it means that the logical complement of the
addressed source bit is used, but the source bit itself is not affected.
No other flags are affected.

Example: MOV C,P2.0 ;Load C with input pin
 ;state of P2.0
 ORL C,P2.7 ;OR carry flag with
 ;bit 7 of P2
 MOV P2.1,C ;move C to bit 1 of
 ;port 2
 ORL C,/OV ;OR with inverse of OV
 ;flag

MOV <dest-bit>,<source-bit>
The instruction loads the value of source operand bit into the destination
operand bit. One of the operands must be the carry flag; the other may
be any directly-addressable bit. No other register or flag is affected.
Example: MOV P2.3,C
 MOV C,P3.3
 MOV P2.0,C

 60 Chapter 3 Instruction Set

If P2=C5H (11000101), P3.3=0 and CY=1 initially, then after the above
instructions, P2=CCH (11001100) and CY=0.

JC rel
This instruction branches to the address, indicated by the label, if the
carry flag is set, otherwise the program continues to the next instruction.
No flags are affected.

Example: CLR C
 SUBB A,R0
 JC ARRAY1
 MOV A,#20H

The carry flag is cleared initially. After the SUBB instruction, if the value
of A is smaller than R0, then the instruction sets the carry flag and
causes program execution to branch to ARRAY1 address, otherwise it
continues to the MOV instruction.

JNC rel
This instruction branches to the address, indicated by the label, if the
carry flag is not set, otherwise the program continues to the next
instruction. No flags are affected. The carry flag is not modified.

Example: CLR C
 SUBB A,R0
 JNC ARRAY2
 MOV A,#20H

The above sequence of instructions will cause the jump to be taken if the
value of A is greater than or equal to R0. Otherwise the program will
continue to the MOV instruction.

 Chapter 3 Instruction Set 61

JB <bit>,rel
This instruction jumps to the address indicated if the destination bit is 1,
otherwise the program continues to the next instruction. No flags are
affected. The bit tested is not modified.
Example: JB ACC.7,ARRAY1
 JB P1.2,ARRAY2

If the accumulator value is 01001010 and Port 1=57H (01010111), then
the above instruction sequence will cause the program to branch to the
instruction at ARRAY2.

JNB <bit>,rel
This instruction jumps to the address indicated if the destination bit is 0,
otherwise the program continues to the next instruction. No flags are
affected. The bit tested is not modified.
Example: JNB ACC.6,ARRAY1
 JNB P1.3,ARRAY2

If the accumulator value is 01001010 and Port 1=57H (01010111), then
the above instruction sequence will cause the program to branch to the
instruction at ARRAY2.

JBC <bit>,rel
If the source bit is 1, this instruction clears it and branches to the address
indicated; else it proceeds with the next instruction. The bit is not
cleared if it is already a 0. No flags are affected.
Example: JBC P1.3,ARRAY1
 JBC P1.2,ARRAY2

If P1=56H (01010110), the above instruction sequence will cause the
program to branch to the instruction at ARRAY2, modifying P1 to 52H
(01010010).

 62 Chapter 3 Instruction Set

Program Branching Instructions
Program branching instructions are used to control the flow of actions in
a program. Some instructions provide decision making capabilities and
transfer control to other parts of the program e.g. conditional and
unconditional branches. The list of program branching instructions is
shown in Table 3.6.

Mnemonic Description
ACALL addr11 Absolute subroutine call
LCALL addr16 Long subroutine call
RET Return from subroutine
RETI Return from interrupt
AJMP addr11 Absolute jump
LJMP addr16 Long jump
SJMP rel Short jump
JMP @A+DPTR Jump indirect
JZ rel Jump if A=0
JNZ rel Jump if A NOT=0
CJNE A,direct,rel
CJNE A,#data,rel
CJNE Rn,#data,rel
CJNE @Ri,#data,rel

Compare and Jump if Not Equal

DJNZ Rn,rel
DJNZ direct,rel

Decrement and Jump if Not Zero

NOP No Operation

Table 3.6 List of Program Branching Instructions

 Chapter 3 Instruction Set 63

ACALL addr11
This instruction unconditionally calls a subroutine indicated by the
address. The operation will cause the PC to increase by 2, then it pushes
the 16-bit PC value onto the stack (low order byte first) and increments
the stack pointer twice. The PC is now loaded with the value addr11 and
the program execution continues from this new location. The subroutine
called must therefore start within the same 2K block of the program
memory. No flags are affected.
Example: ACALL LOC_SUB

If SP=07H initially and the label “LOC_SUB” is at program memory
location 0567H, then executing the instruction at location 0230H,
SP=09H, internal RAM locations 08H and 09H will contain 32H and 02H
respectively and PC=0567H.

LCALL addr16
This instruction calls a subroutine located at the indicated address. The
operation will cause the PC to increase by 3, then it pushes the 16-bit PC
value onto the stack (low order byte first) and increments the stack
pointer twice. The PC is then loaded with the value addr16 and the
program execution continues from this new location. Since it is a Long
call, the subroutine may therefore begin anywhere in the full 64KB
program memory address space. No flags are affected.
Example: LCALL LOC_SUB

Initially, SP=07H and the label “LOC_SUB” is at program memory
location 2034H. Executing the instruction at location 0230H, SP=09H,
internal RAM locations 08H and 09H contain 33H and 02H respectively
and PC=2034H.

 64 Chapter 3 Instruction Set

RET

This instruction returns the program from a subroutine. RET pops the
high byte and low byte address of PC from the stack and decrements the
SP by 2. The execution of the instruction will result in the program to
resume from the location just after the “call” instruction. No flags are
affected.
Example: RET

Suppose SP=0BH originally and internal RAM locations 0AH and 0BH
contain the values 30H and 02H respectively. The instruction leaves
SP=09H and program execution will continue at location 0230H.

RETI
This instruction returns the program from an interrupt subroutine. RETI
pops the high byte and low byte address of PC from the stack and
restores the interrupt logic to accept additional interrupts. SP decrements
by 2 and no other registers are affected. However the PSW is not
automatically restored to its pre-interrupt status. After the RETI, program
execution will resume immediately after the point at which the interrupt is
detected.
Example: RETI

Suppose SP=0BH originally and an interrupt is detected during the
instruction ending at location 0213H. Internal RAM locations 0AH and
0BH contain the values 14H and 02H respectively. The RETI instruction
leaves SP=09H and returns program execution to location 0234H.

AJMP addr11
The AJMP instruction transfers program execution to the destination
address which is located at the absolute short range distance (short
range means 11-bit address). The destination must therefore be within
the same 2K block of program memory.
Example: AJMP NEAR

If the label NEAR is at program memory location 0120H, the AJMP
instruction at location 0234H loads the PC with 0120H.

 Chapter 3 Instruction Set 65

LJMP addr16
The LJMP instruction transfers program execution to the destination
address which is located at the absolute long range distance (long range
means 16-bit address).The destination may therefore be anywhere in the
full 64K program memory address space. No flags are affected.
Example: LJMP FAR_ADR

If the label FAR_ADR is at program memory location 3456H, the LJMP
instruction at location 0120H loads the PC with 3456H.

SJMP rel
This is a short jump instruction, which increments the PC by 2 and then
adds the relative value ‘rel’ (signed 8-bit) to the PC. This will be the new
address where the program would branch to unconditionally. Therefore,
the range of destination allowed is from -128 to +127 bytes from the
instruction.

Example: SJMP RELSRT

If the label RELSRT is at program memory location 0120H and the SJMP
instruction is located at address 0100H, after executing the instruction,
PC=0120H.

JMP @A + DPTR
This instruction adds the 8-bit unsigned value of the ACC to the 16-bit
data pointer and the resulting sum is returned to the PC. Neither ACC
nor DPTR is altered. No flags are affected.
Example: MOV DPTR, #LOOK_TBL
 JMP @A + DPTR
 LOOK_TBL: AJMP LOC0
 AJMP LOC1
 AJMP LOC2

If the ACC=02H, execution jumps to LOC1.

Note: AJMP is a two byte instruction.

 66 Chapter 3 Instruction Set

JZ rel
This instruction branches to the destination address if ACC=0; else the
program continues to the next instruction. The ACC is not modified and
no flags are affected.

Example: SUBB A,#20H
 JZ LABEL1
 DEC A

If ACC originally holds 20H and CY=0, then the SUBB instruction
changes ACC to 00H and causes the program execution to continue at
the instruction identified by LABEL1; otherwise the program continues to
the DEC instruction.

JNZ rel
This instruction branches to the destination address if any bit of ACC is a
1; else the program continues to the next instruction. The ACC is not
modified and no flags are affected.

Example: DEC A
 JNZ LABEL2
 MOV RO, A

If ACC originally holds 00H, then the instructions change ACC to FFH
and cause the program execution to continue at the instruction identified
by LABEL2; otherwise the program continues to MOV instruction.

CJNE <dest-byte>,<source-byte>,rel
This instruction compares the magnitude of the dest-byte and the
source-byte and branches if their values are not equal. The carry flag is
set if the unsigned dest-byte is less than the unsigned integer source-
byte; otherwise, the carry flag is cleared. Neither operand is affected.

 Chapter 3 Instruction Set 67

Example: CJNE R3,#50H,NEQU
 … … ;R3 = 50H
 NEQU: JC LOC1 ;If R3 < 50H
 … … ;R7 > 50H
 LOC1: … … ;R3 < 50H

DJNZ <byte>,<rel-addr>
This instruction is ”decrement jump not zero”. It decrements the contents
of the destination location and if the resulting value is not 0, branches to
the address indicated by the source operand. An original value of 00H
underflows to FFH. No flags are affected.

Example: DJNZ 20H,LOC1
 DJNZ 30H,LOC2
 DJNZ 40H,LOC3

If internal RAM locations 20H, 30H and 40H contain the values 01H, 5FH
and 16H respectively, the above instruction sequence will cause a jump
to the instruction at LOC2, with the values 00H, 5EH, and 15H in the 3
RAM locations. Note, the first instruction will not branch to LOC1
because the [20H] = 00H, hence the program continues to the second
instruction. Only after the execution of the second instruction (where the
location [30H] = 5FH), then the branching takes place.

NOP
This is the no operation instruction. The instruction takes one machine
cycle operation time. Hence it is useful to time the ON/OFF bit of an
output port.
Example: CLR P1.2
 NOP
 NOP
 NOP
 NOP
 SETB P1.2

 68 Chapter 3 Instruction Set

The above sequence of instructions outputs a low-going output pulse on
bit 2 of Port 1 lasting exactly 5 cycles. Note a simple SETB/CLR
generates a 1 cycle pulse, so four additional cycles must be inserted in
order to have a 5-clock pulse width.

 Chapter 3 Instruction Set 69

3.3 Tutorial Questions

1. What addressing mode is used to access the upper 128 bytes of
internal RAM of the C8051F020?

2. Show how the content of internal address 6BH could be
transferred to the accumulator.

3. What is the difference between the following instructions:

 ADD A, @R5 and ADD A, R5

4. Below show a sequence of instructions, give the result of
accumulator before and after the DA instruction.

 MOV A,13H
 MOV R2,18H
 ADD A, R2
 DA A

5. Explain the difference between AJMP, SJMP, and LJMP
instructions.

6. Write an instruction which is able to complement bit 7, 6, 2 and 0
of Port 2.

7. Assuming that the CY=1 and ACC= F0H find the content of the
accumulator after the execution of the following instruction:

 RLC A

8. Write a program that scans a string of 80 characters looking for a
carriage return (CR= ASCII value 0DH). If CR is found, the length
of the string (up to where the CR is found) is put into A register.
Otherwise, put 30H (ASCII value of ‘0’) into A register.

4

ASM Directives

4.0 Introduction 72
4.1 Address Control 72

ORG, USING, END
4.2 Symbol Definition 74

EQU, SET, CODE, DATA, IDATA, XDATA

4.3 Memory Initialization/Reservation 75
DB, DW, DD, DS

4.4 Segment Control 78
Generic Segment (SEGMENT, RSEG),
Absolute Segment (CSEG, DSEG and XSEG)

4.5 Example Program Template 80
4.6 Tutorial Questions 81

 72 Chapter 4 ASM Directives

4.0 Introduction
Assembler directives are special codes placed in the assembly language
program to instruct the assembler to perform a particular task or function.
They can be used to define symbol values, reserve and initialize storage
space for variables and control the placement of the program code. They
are not assembly language instructions as they do not generate any
machine code.

The ASM directives are grouped into the following categories:

1) Address Control (ORG, USING) and END directive

2) Symbol Definition (EQU, SET, BIT, CODE, DATA, IDATA,
 and XDATA)

3) Memory Initialization/Reservation (DB, DW, DD, DS)

4) Segment Control (SEGMENT, RSEG, CSEG, DSEG, XSEG)

4.1 Address Control

ORG
The specified format for the ORG directive is:
 ORG expression

The ORG directive is used to set the location counter in the current
segment to an offset address specified by the expression. However, it
does not alter the segment address. The segment address can only be
changed by using the standard segment directives.

Example: ORG 80H ;Set location counter to
 ;80H

The ORG directive need not only be used in the code segment but can
be used in other segments too like the data segment. For example, to

 Chapter 4 ASM Directives 73

reserve one byte memory space each at locations SECONDS and
MINUTES in the data segment, we would write,

 DSEG ;data segment
 ORG 30H
SECONDS: DS 1
MINUTES: DS 1

USING
The specified format for the USING directive is:
 USING expression

expression may have a value from 0 to 3. This USING directive merely
informs the assembler which register bank to use for coding the AR0
through AR7 (the value of AR0 through AR7 is calculated as the absolute
address of R0 through R7 in the register bank specified by the USING
directive). It does not generate any code to select the register bank. So
to ensure a correct register bank, one must program the PSW register
appropriately.
Example:

 MOV PSW,#00010000B ;select Register
 ;Bank 2
 USING 2 ;using Bank 2
 PUSH AR7
 MOV PSW,#00001000B ;select Register
 ;Bank 1
 USING 1 ;using Bank 1
 PUSH AR3

END
The specified format for the END directive is:

 END

 74 Chapter 4 ASM Directives

The END directive indicates the end of the source file. It informs the
assembler where to stop assembling the program. Hence any text that
appears after the END directive will be ignored by the assembler. The
END directive is a must in every source file. If it is not written at the end
of the program, the assembler will give an error message.

4.2 Symbol Definition
The symbol definition directive assigns a symbolic name to an
expression or a register. This expression can be a constant number, an
address reference or another symbolic name.

EQU, SET

The format of the EQU and SET directives are as follows:

 Symbol EQU expression
 Symbol EQU register
 Symbol SET expression
 Symbol SET register

Note: expression can include simple mathematical operators like
 ‘+’, ’-‘, ‘ * ‘, ‘/’, MOD

 register includes A, R0, R1, R2, R3, R4, R5, R6 and R7

Examples:

COUNT EQU R3
TOTAL EQU 200
AVERG SET TOTAL/5
TABLE EQU 10
VALUE SET TABLE*TABLE

Sometimes it is an advantage to use symbol to represent a value or a
register because it makes the program more meaningful to a user.
Another advantage is by equating the symbol to a value, the user only
needs to change only once at the directive statement and the rest of the
statements, which make reference to the symbol, will be updated
automatically.

 Chapter 4 ASM Directives 75

CODE, DATA, IDATA, XDATA

Each of these directives assigns an address value to a symbol. The
format of the directive is as follows:

 Symbol BIT bit_address
 Symbol CODE code_address
 Symbol DATA data_address
 Symbol IDATA idata_address
 Symbol XDATA xdata_address

Note:

bit_address The bit address which is available from bit-addressable
 location of 20H through 2FH

code_address The code address ranging from 0000H to 0FFFFH

data_address The address is from 00H to 7FH (internal data memory)
and the special function register address from 80H to
0FFH

idata_address The address is ranging from 00H to 0FFH

xdata_address The external data space ranging from 0000H to 0FFFFH

Example:

Act_bit BIT 2EH ;use bit location 2EH
 ;as Act_bit

Port2 DATA A0H ;a special function

 ;register, P2

4.3 Memory Initialization/Reservation

The directives for memory initialization and reservation are DB, DW, DD
and DS. These directives will initialize or reserve memory storage in the
form of a byte, a word, or a double word in the code space.

 76 Chapter 4 ASM Directives

DB (Define Byte)

The DB directive initializes code memory with a byte value. The directive
has the following format:

 label: DB expression, expression…

Note:

label is the starting address where the byte values are stored

expression is the byte value, it can be a character string, a symbol,
 or an 8-bit constant

Example:

 CSEG AT 200H
MSG: DB ‘ Please enter your password’, 0
ARRAY: DB 10H, 20H,30H,40H,50H

The above string of characters will be stored as ASCII bytes starting from
location 200H, which means location [200H]=50H, [201H]=6CH and so
on.

Notice that the DB directive is declared in a code segment. If it is defined
in a different segment, the assembler will generate an error.

DW (Define Word)

The DW directive initializes the code memory with a double byte or a 16-
bit word. The DW directive has the following format:

 label: DW expression ,expression…

 Chapter 4 ASM Directives 77

Example:

;2 words allocated
CNTVAL DW 1025H, 2340H
;10 values of 1234H starting from location XLOC
XLOC DW 10 DUP (1234H)

The DUP operator can be used to duplicate a sequence of memory
contents.

Similarly, the DW directive can only be used in the code segment. If it is
defined in other segments, the assembler will give an error message.

DD (Define Double Word)

The DD directive initializes the code memory with double word or 32-bit
data value. The DD directive has the following format:

 label: DD expression ,expression…

Example:

ADDR DD 820056EFH, 10203040H
EMPT DD 3 DUP (0)

Same as the DB and DW directives, DD can only be specified in the
code memory or segment. If it is declared in other segment it risks
having error message generated by the assembler.

DS (Define Storage)

The DS directive reserves a specified byte space in the memory. It can
only be used in the currently active segment like ISEG, DSEG or XSEG.
The DS directive has the following format:

 label: DS expression

The expression can not contain forward references, relocatable symbols
or external symbols.

 78 Chapter 4 ASM Directives

Example:

 XSEG AT 1000H ;select memory block from
 ;external memory, starting
 ;address from1000H

Input: DS 16 ; reserve 16 bytes
Wavetyp: DS 1 ; reserve 1 byte

The location counter of the segment is incremented by one byte every
time the DS statement is encountered in the program. The user should
be aware that no more than 16 byte values should be entered starting
from the address ‘Input’ as shown in the above example.

4.4 Segment Control

In x51 CPU structure, a block of code or data memory is usually referred
to as a segment. There are two types of segments: generic and absolute.

Generic Segment

Generic segments are created using the SEGMENT directive. The
format is as follows:

 Symbol SEGMENT segment_type

Example:

MYDATA SEGMENT DATA

The above directive defines a relocatable segment named as MYDATA,
with a memory class of DATA.

Once the above segment name has been defined, the next step is to
select that segment by using the RSEG directive as shown in the
example below.

Example:

RSEG MYDATA

 Chapter 4 ASM Directives 79

Whenever the above statement is encountered, the MYDATA segment
will become the current active segment until the assembler comes
across another RSEG directive, which will then define another segment
area.

Absolute Segment

Absolute segment means a fixed memory segment. Absolute segments
are created by CSEG, DSEG and XSEG directives. The format of this
directive is as follows:

CSEG AT address ; defines an absolute code segment
DSEG AT address ; defines an absolute data segment

 XSEG AT address ; defines an absolute external data segment

Example:

CSEG AT 0300H ;select code segment and set
 ;the starting address at 0300H

DSEG AT 0400H ;select data segment and set
 ;the starting address at 0400H

Section 4.5 shows a program template where various types of assembler
directives have been used.

 80 Chapter 4 ASM Directives

4.5 Example Program Template
;--
$include (c8051f020.inc) ;Include register definition file
;--
; EQUATES
;--
CR EQU 0DH ;Set CR (carriage return) to 0DH
;--
; RESET and INTERRUPT VECTORS
;--
 ; Reset Vector
 CSEG AT 0 ; Jump to the start of code at
 LJMP Main ; the reset vector

 ; Timer 4 Overflow Vector
 ORG 83h ; Jump to the start of code at
 LJMP TIMER4INT ; the Timer4 Interrupt vector
;--
; DATA SEGMENT
;--
MYDATA SEGMENT DATA

 RSEG MYDATA ; Switch to this data segment.
 ORG 30h

Input: DS 16
temp: DS 1
;--
; CODE SEGMENT
;--
MYCODE SEGMENT CODE
 RSEG MYCODE ; Switch to this code segment
 USING 0 ; Specify register bank
 ; for main code.

Main: ; Insert Main Routine of program here
 ; … …
 ; … …
;--
; Timer 4 Interrupt Service Routine
;--
TIMER4INT: ; Insert Timer 4 ISR here
 ; … …
 ; … …
 RETI
;--
; Global Constant
;--
Rdm_Num_Table:
DB 05eh, 0f0h, 051h, 0c9h, 0aeh, 020h, 087h, 080h
DB 092h, 01ch, 079h, 075h, 025h, 07ch, 02bh, 047h
;--
; End of file.
END

 Chapter 4 ASM Directives 81

4.6 Tutorial Questions
1. Give an example of the following:

 (a) Absolute Segment directive

 (b) Memory Initialization directive

 (c) Relocatable Segment directive

2. Correct the error in the following instructions:]

(a) DSEG AT 0300H

VAL: DB 1

 (b) PAR : EQU 200

3. Write a short program in a relocatable segment to do the following
task:

Add the values from register R0 and R3 of Bank 2 and output the
sum to Port3

4. If there is a need for keyboard interfacing upon execution of the
program, what sort of directives would be most suitable to be
declared in the program in order to perform the above task?

5. Name the type of memory where the following assembler
directives can be defined.

ORG 10H
DB 61H, 62H, 63H
DW ‘0’,’1’,’2’

6. What is the advantage of using EQU directive in an assembly
language program?

5

System Clock, Crossbar and
GPIO

5.0 Introduction 85
5.1 Oscillator Programming Registers 86

Internal Oscillator Control Register (OSCICN), External
Oscillator Control Register (OSCXCN)

5.2 Watchdog Timer 88
 Watchdog Timer Control Register (WDTCN), Disable WDT
Lockout, Enable/Reset WDT, Disable WDT, Setting WDT
Interval

5.3 Digital Crossbar 90
Crossbar Pin Assignment and Allocation Priority, Enabling the
Crossbar

5.4 GPIO 93
 Port pin Output Modes, Configuring Port pins as Digital Inputs,
Port 3 External Interrupts, Disabling Weak Pull-ups, Analog
Inputs at Port 1

5.5 Crossbar and GPIO SFRs 96
 Crossbar Register 0 (XBR0), Crossbar Register 1 (XBR1),
 Crossbar Register 2 (XBR2), Port0 Data Register (P0), Port0
Output Mode Register (P0MDOUT), Port1 Data Register (P1),
Port1 Output Mode Register (P1MDOUT), Port1 Input Mode
Register (P1MDIN), Port2 Data Register (P2), Port2 Output
Mode Register (P2MDOUT), Port3 Data Register (P3), Port3
Output Mode Register (P3MDOUT), Port3 Interrupt Flag Register
(P3IF)

 84 Chapter 5 System Clock, Crossbar and GPIO

5.6 Ports 4 through 7 103
Port 7-4 Output Mode Register (P74OUT), Portx Data Register
(Px)

5.7 Tutorial Questions 106

 Chapter 5 System Clock, Crossbar and GPIO 85

5.0 Introduction
The C8051F020 micro-controller may be operated from an external
oscillator or an internal oscillator, both are included on the target board.
After any reset, the MCU operates from the internal oscillator at a typical
frequency of 2.0MHz by default but may be configured by software to
operate at other typical frequencies of 4.0Mhz, 8.0MHz or 16MHz.
Therefore, in many applications an external oscillator is not required.
However, an external 22.1184MHz crystal is installed on the target board
as shipped from the factory. It is especially useful in providing a system
clock frequency suitable for high baud rate generation for UART. Both
the oscillators are disabled when the /RST pin is held low. The oscillator
and its associated programming registers are shown in Figure 5.1.

OSC

Internal Clock
Generator

SYSCLK

Input
Circuit

OSCXCN

EN

X
TL

V
LD

XO
SC

M
D

2
XO

SC
M

D
1

XO
SC

M
D

0

XF
C

N
2

XF
C

N
1

XF
C

N
0

OSCICN

M
S

C
LK

E

IF
R

D
Y

C
LK

S
L

IO
S

C
E

N
IF

C
N

1
IF

C
N

0

XTAL1

XTAL2

opt. 1

opt. 2

opt. 4 opt. 3
XTAL1

XTAL2

XTAL1XTAL1

AV+

AGND

VDD

AV+

Figure 5.1 Oscillator and associated programming registers

The external oscillator may be a crystal, capacitor, RC circuit or an
external resonator. These are shown as various options in Figure 5.1.
The oscillator circuit must be configured for one of these sources which
is done by programming the OSCXCN special function register.

 86 Chapter 5 System Clock, Crossbar and GPIO

5.1 Oscillator Programming Registers
Two SFRs are provided to program the oscillator circuit. These are the
OSCICN (Internal Oscillator Control Register) and OSCXCN (External
Oscillator Control Register). The registers are described in this section.

Internal Oscillator Control Register (OSCICN)

Bit Symbol Description

7 MSCLKE

Missing Clock Enable Bit
0: Missing Clock Detector Disabled
1: Missing Clock Detector Enabled. The reset is
 triggered if clock is missing for more than 100µs

6-5 Unused Read = 00b, Write = don’t care

4 IFRDY

Internal Oscillator Frequency Ready Flag
0: Internal Oscillator Frequency not running at
 speed specified by the IFCN bits.
1: Internal Oscillator Frequency is running at
 speed specified by the IFCN bits.

3 CLKSL
System Clock Source Select Bit
0: Uses Internal Oscillator as System Clock
1: Uses External Oscillator as System Clock

2 IOSCEN
Internal Oscillator Enable Bit
0: Internal Oscillator Disabled
1: Internal Oscillator Enabled

1-0 IFCN1-
IFCN 0

Internal Oscillator Frequency Control Bit
00: Internal Oscillator typical frequency is 2 MHz
01: Internal Oscillator typical frequency is 4 MHz
10: Internal Oscillator typical frequency is 8 MHz
11: Internal Oscillator typical frequency is 16 MHz

Table 5.1 OSCICN (Internal Oscillator Control) Register

Bits 0 and 1 are used to select the internal oscillator frequency. Bit 2
enables or disables the internal oscillator while bit 3 selects between the
internal and external oscillator. Once the internal oscillator is enabled, it
takes a while for it to settle down and generate the desired frequency set
by IFCN1-IFCN0 (Bits 0 and 1). Bit 4 shows the status of the internal
oscillator and is set to 1 when the oscillator is running at the specified
speed. Bit 7 is to be set to 1 if missing clock detector is to be enabled. A
reset is triggered if the clock is missing for a period greater than 100µs.

 Chapter 5 System Clock, Crossbar and GPIO 87

The OSCICN SFR is at address 0xB2. Upon reset, the value in this
register is set to 0001 0100. This enables the internal oscillator to
operate at a frequency of 2 MHz.

External Oscillator Control Register (OSCXCN)

Bit Symbol Description

7 XTLVLD
Crystal Oscillator Valid Flag
0: Crystal Oscillator is unused or not yet stable
1: Crystal Oscillator is running and stable

6-4 XOSCMD2-0

External Oscillator Mode Bits
00x: Off. XTAL1 pin is grounded internally.
010: System Clock from External CMOS Clock
 on XTAL1 pin.
011: System Clock from External CMOS Clock
 on XTAL1 pin divided by 2.
10x: RC/C Oscillator Mode with divide by 2
 stage.
110: Crystal Oscillator Mode
111: Crystal Oscillator Mode with divide by 2
 stage

3 Reserved Read = undefined, Write = don’t care
2-0 XFCN2-0 External Oscillator Frequency Control Bit

Table 5.2 OSCXCN (External Oscillator Control) Register

If the crystal frequency is greater than 6.7 MHz, which is indeed the case
for the on-board crystal of the target board, bits 2-0 (XFCN2-0) must be
set to 111. Bits 6-4 (XOSCMD2-0) are programmed based on the
external oscillator whether it is RC/C, crystal or CMOS clock on XTAL1.

After the external oscillator has been enabled, by setting CLKSL
(OSCICN.3) to 1, one must wait for the crystal oscillator to be stable.
This can be checked by polling bit 7 (XTLVLD) of OSCXCN.

The OSCXCN SFR is at address 0xB1. Upon reset, the value in this
register is set to 0000 0000. This turns off the crystal oscillator and the
XTAL1 pin is grounded internally.

 88 Chapter 5 System Clock, Crossbar and GPIO

Example:

 MOV OSCXCN, #67H ;enable external
 ;crystal oscillator at
 ;22.1184MHz
 CLR A ;wait at least 1ms
 DJNZ ACC, $;wait ~512us
 DJNZ ACC, $;wait ~512us
XTLVLD_wait: ;poll for XTLVLD 1
 MOV A, OSCXCN
 JNB ACC.7, XTLVLD_wait
 ORL OSCICN, #08H ;select external
 ;oscillator as system
 ;clock source (CLKSL=1)

;disable Internal
;Oscillator (IOSCEN=0)

 ORL OSCICN, #80H ;enable missing clock
 ;detector (MSCLKE=1)

5.2 Watchdog Timer
The MCU has a programmable Watchdog Timer (WDT) which runs off
the system clock. An overflow of the WDT forces the MCU into the reset
state. Before the WDT overflows, the application program must restart it.
WDT is useful in preventing the system from running out of control,
especially in critical applications. If the system experiences a software or
hardware malfunction which prevents the software from restarting the
WDT, the WDT will overflow and cause a reset. After a reset, the WDT is
automatically enabled and starts running at the default maximum time
interval which is 524 ms for a 2 MHz system clock.

The WDT consists of a 21-bit timer running from the programmed system
clock. A WDT reset is generated when the period between specific writes
to its control register exceeds the programmed limit.

The WDT may be enabled or disabled by software. It may also be locked
to prevent accidental disabling. Once locked, the WDT cannot be
disabled until the next system reset. It may also be permanently
disabled. The watchdog features are controlled by programming the
Watchdog Timer Control Register (WDTCN). The details of WDTCN are
shown in Table 5.3.

 Chapter 5 System Clock, Crossbar and GPIO 89

Watchdog Timer Control Register (WDTCN)

Bit Description

7-0

WDT Control
Writing 0xA5 both enables and reloads the WDT
Writing 0xDE followed within 4 system clocks by
0xAD disables the WDT
Writing 0xFF locks out the disable feature

4

Watchdog Status Bit (when Read)
Reading this bit indicates the Watchdog Timer
Status
0: WDT is inactive
1: WDT is active

2-0

Watchdog Timeout Interval Bits
These bits set the Watchdog Timer Interval.
When writing these bits, WDTCN.7 must be set
to 0.

Table 5.3 WDTCN (Watchdog Timer Control) Register

Disable WDT Lockout
Writing 0xFF to WDTCN locks out the disable feature. It cannot be
disabled until the next system reset. In applications where the watchdog
timer is essential, 0xFF should be written to WDTCN in the initialization
code. Writing 0xFF does not enable or reset the watchdog timer.

Enable/Reset WDT
To enable and reset the watchdog timer, write 0xA5 to the WDTCN
register. To prevent a watchdog timer overflow, the application must
periodically write 0xA5 to WDTCN.

Disable WDT
To disable the WDT, the application must write 0xDE followed by, within
4 clock cycles, 0xAD to the WDTCN register. If 0xAD is not written with 4
cycles of writing 0xDE, the disable operation is not effective. Interrupts
must be disabled during this procedure to avoid delay between the two
writes.

 90 Chapter 5 System Clock, Crossbar and GPIO

Example:

 CLR EA ;disable all interrupts
 MOV WDTCN, #0DEH ;disable WDT
 MOV WDTCN, #0ADH ;disable WDT
 SETB EA ;enable interrupts

Setting WDT Interval
Bits 2-0 of WDTCN control the watchdog timeout interval. The interval is
given by the following equation:

43+WDTCN [2-0] x Tsysclk

Tsysclk is the system clock period. For a 2 MHz system clock, the interval
range that can be programmed is 0.032 ms to 524 ms. When the
Watchdog Timeout Interval Bits are written to the WDTCN register, the
WDTCN.7 bit must be held at logic 0. The programmed interval may be
read back by reading the WDTCN register. After a reset, WDTCN[2-0]
reads 111b.

5.3 Digital Crossbar
The C8051F020 has a rich set of digital resources like UARTs, System
Management Bus (SMBus),Timer control inputs and interrupts. However,
these peripherals do not have dedicated pins through which they may be
accessed. Instead they are available through the four lower I/O ports
(P0, P1, P2 and P3). Each of the pins on P0, P1, P2 and P3 can be
defined as a General Purpose Input/Output (GPIO) pin or can be
controlled by a digital peripheral. Thus the lower ports have dual
functionalities. Based on the application, a system designer would have
to decide what capabilities are required and then allocate the necessary
digital functions to the port pins. This flexibility makes the MCU very
versatile. The resource allocation is controlled by programming the
Priority Crossbar Decoder, simply called the “Crossbar”. The port pins
are allocated and assigned to the digital peripherals using a priority
order. Figure 5.2 is the functional block diagram showing the priority
decoder, lower ports and the digital resources that may be controlled.

 Chapter 5 System Clock, Crossbar and GPIO 91

External
Pins

Digital
Crossbar

Priority
Decoder

SMBus

2

SPI
4

UART0

2

PCA

2

T0, T1,
T2, T2EX,
T4,T4EX

/INT0,
/INT1

P1.0

P1.7

P2.0

P2.7

P0.0

P0.7

Highest
Priority

Lowest
Priority

8

8

Comptr.
Outputs

(In
te

rn
al

 D
ig

ita
l S

ig
na

ls
)

Highest
Priority

Lowest
Priority

UART1

/SYSCLK
CNVSTR

6

2

P3.0

P3.7

8

8

P0MDOUT, P1MDOUT,
P2MDOUT, P3MDOUT

Registers

XBR0, XBR1,
XBR2, P1MDIN

Registers

P1
I/O

Cells

P3
I/O

Cells

P0
I/O

Cells

P2
I/O

Cells

8

Port
Latches

P0

P1

P2

8

8

8

P3

8

(P2.0-P2.7)

(P1.0-P1.7)

(P0.0-P0.7)

(P3.0-P3.7)

To
ADC1
Input

To External
Memory
Interface
(EMIF)

Figure 5.2 Digital Crossbar and Lower I/O Ports

Crossbar Pin Assignment and Allocation Priority
The digital peripherals are assigned Port pins in a priority order which is
shown in Figure 5.3. UART0 has the highest priority and CNVSTR has
the lowest priority. There are three configuration registers, XBR0, XBR1
and XBR2, which are programmed to accomplish the pin allocations. If
the corresponding enable bits of the peripheral are set to logic 1 in the
crossbar registers, then the port pins are assigned to that peripheral. For
example, if the UART0EN bit (XBR0.2) is set to logic 1, the TX0 and RX0
pins will be mapped to the port pins P0.0 and P0.1 respectively. Since
UART0 has the highest priority, its pins will always be mapped to P0.0
and P0.1 when UART0EN is set to logic and will have precedence over
any other allocation. If a digital peripheral’s enable bit is not set to logic
1, then it is not accessible through the port pins. Pin assignments to
associated functions are done in groups, for example, TX0 and RX0 are

 92 Chapter 5 System Clock, Crossbar and GPIO

assigned together. Each combination of enabled peripherals results in a
unique device pin-out.

 P0 P1 P2 P3
Pin I/O 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 Crossbar Register Bits

● Tx0
Rx0 ● UART0EN: XBR0.2

● ●
 ● ●
 ● ●

SCK
MISO
MOSI
NSS ● ●

SPI0EN: XBR0.1

● ● ● ● SDA
SCL ● ● ● ● SMB0EN: XBR0.0

● ● ● ● ● TX1
RX1 ● ● ● ● ● ●

UART1EN: XBR2.2

● ● ● ● ● ● ●
 ● ● ● ● ● ● ● ●
 ● ● ● ● ● ● ● ●
 ● ● ● ● ● ● ● ● ●

CEX0
CEX1
CEX2
CEX3
CEX4 ● ● ● ● ● ● ● ● ●

PCA0ME: XBR0.[5:3]

ECI ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ECI0E: XBR0.6
CP0 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● CP0E: XBR0.7
CP1 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● CP1E: XBR1.0
T0 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● T0E: XBR1.1

/INT0 ● INT0E: XBR1.2
T1 ● T1E: XBR1.3

/INT1 ● INT1E: XBR1.4
T2 ● T2E: XBR1.5

T2EX ● T2EXE: XBR1.6
T4 ● T4E: XBR2.3

T4EX ● T4EXE: XBR2.4
/SYSCLK ● SYSCKE: XBR1.7
CNVSTR ● CNVSTE: XBR2.0

A
IN

1.
0/

A
8

A
IN

1.
1/

A
9

A
IN

1.
2/

A
10

A

IN
1.

3/
A

11

A
IN

1.
4/

A
12

A

IN
1.

5/
A

13

A
IN

1.
6/

A
14

A

IN
1.

7/
A

15

A
8m

/A
0

A
9m

/A
1

A
10

m
/A

2
A

11
m

/A
3

A
12

m
/A

4
A

13
m

/A
5

A
14

m
/A

6
A

15
m

/A
7

A
D

0/
D

0
A

D
1/

D
1

A
D

2/
D

2
A

D
3/

D
3

A
D

4/
D

4
A

D
5/

D
5

A
D

6/
D

6
A

D
7/

D
7

 A
LE

 /R

D

 /
W

R

AIN1 Inputs /
Mon-Muxed Addr H

Muxed Addr H /
Non-Muxed Addr L

Muxed Data /
Non-Muxed Data

Figure 5.3 Digital Crossbar Priority Decode Table

The output states of port pins that are allocated by the crossbar are
controlled by the digital peripheral that is mapped to those pins and
hence Writes to the Port Data registers (or associated Port bits) will have
no effect on the states of the pins. The Port pins on Port 0 to 3 that are
not allocated by the Crossbar may be accessed as General-Purpose I/O
pins by reading and writing the associated Port Data registers.

 Chapter 5 System Clock, Crossbar and GPIO 93

A Read of a Port Data Register (or Port bit) will always return the logic
state present at the pin itself, regardless of whether the Crossbar has
allocated the pin for peripheral use or not.

Although the crossbar can be configured dynamically at runtime, the
crossbar registers are typically configured in the initialization code of the
application software and thereafter left alone. The peripherals are then
configured individually.

Enabling the Crossbar
The crossbar is enabled once all the Crossbar registers (XBR0, XBR1
and XBR2) have been configured. This is done by setting XBARE
(XBR2.4) to logic 1. Until the Crossbar is enabled, the output drivers on
Port 0 to 3 are explicitly disabled in order to prevent possible contention
on port pins while the Crossbar registers and other registers, which can
affect the device pin-out, are being written. The output drivers on
Crossbar-assigned input signals are explicitly disabled.

5.4 GPIO
The block diagram of the Port I/O cell is shown in Figure 5.4.

DGND

/PORT-OUTENABLE

PORT-OUTPUT

PUSH-PULL VDD VDD

/WEAK-PULLUP

(WEAK)

PORT
PAD

ANALOG INPUT

Analog Select
(Port 1 Only)

PORT-INPUT

Figure 5.4 Block Diagram of a Port I/O Cell

 94 Chapter 5 System Clock, Crossbar and GPIO

Port pin Output Modes

The output mode of each port pin on Ports 0 through 3 can be configured
as either Open-Drain or Push-Pull. The default state is Open-Drain. The
output modes of the Port pins are determined by the bits in the
associated PnMDOUT registers. For example, a logic 1 in P1MDOUT.6
will configure the output mode of P1.6 to Push-Pull; a logic 0 in
P1MDOUT.6 will configure the output mode of P1.6 to Open-Drain. The
PnMDOUT registers control the output modes of the port pins regardless
of whether the Crossbar has allocated the Port pin for a digital peripheral
or not. The exceptions to this rule are the Port pins connected to SDA,
SCL, RX0 (if UART0 is in Mode 0), and RX1 (if UART1 is in Mode 0)
which are always configured as Open-Drain outputs irrespective of the
settings of the associated bits in the PnMDOUT registers.

In the Push-Pull configuration, writing a logic 0 to the associated bit in
the Port Data register will cause the Port pin to be driven to GND, and
writing a logic 1 will cause the Port pin to be driven to VDD. In the Open-
Drain configuration, writing a logic 0 to the associated bit in the Port Data
register will cause the Port pin to be driven to GND, and a logic 1 will
cause the Port pin to assume a high-impedance state. The Open-Drain
configuration is useful to prevent contention between devices in systems
where the Port pin participates in a shared interconnection in which
multiple outputs are connected to the same physical wire.

Configuring Port pins as Digital Inputs

A Port pin is configured as a digital input by setting its output mode to
“Open-Drain” and writing a logic 1 to the associated bit in the Port Data
register. For example, P3.7 is configured as a digital input by setting
P3MDOUT.7 to a logic 0 and P3.7 to a logic 1. If the Port pin has been
assigned to a digital peripheral by the Crossbar and that pin functions as
an input (for example RX0, the UART0 receive pin), then the output
drivers on that pin are automatically disabled.

Port 3 External Interrupts

Port pins for the external interrupts /INT0 and /INT1 are allocated and
assigned by the Crossbar. In addition two pins on Port 3, P3.6 and P3.7,
can be configured to generate edge sensitive interrupts. These interrupts
are configurable as falling- or rising-edge sensitive using the IE6CF

 Chapter 5 System Clock, Crossbar and GPIO 95

(P3IF.2) and IE7CF (P3IF.3) bits. When an active edge is detected on
P3.6 or P3.7, a corresponding External Interrupt flag (IE6 or IE7) will be
set to logic 1 in the P3IF register and if the associated interrupt is
enabled, an interrupt will be generated and the CPU will vector to the
associated interrupt vector location.

Disabling Weak Pull-Ups
By default, each Port pin has an internal weak pull-up device enabled
which provides a resistive connection (about 100 kΩ) between the pin
and VDD. The weak pull-up devices can be globally disabled by writing
logic 1 to the Weak Pull-up Disable bit, (WEAKPUD, XBR2.7). The weak
pull-up is automatically deactivated on any pin that is driving a logic 0.
Hence an output pin will not contend with its own pull-up device.

Analog Inputs at Port 1 pins
The pins on Port 1 can serve as analog inputs to the ADC1 analog
multiplexer. A Port pin is configured as an Analog Input by writing a logic
0 to the associated bit in the P1MDIN register. All Port pins default to a
Digital Input mode. Configuring a Port pin as an analog input:

1. Disables the digital input path from the pin. This prevents
additional power supply current from being drawn when the
voltage at the pin is near VDD / 2. A read of the Port Data bit will
return a logic 0 regardless of the voltage at the Port pin.

2. Disables the weak pull-up device on the pin.

3. Causes the Crossbar to “skip over” the pin when allocating Port
pins for digital peripherals.

It is important to note that the output drivers on a pin, which has been
configured as an Analog Input, are not explicitly disabled. Therefore, the
associated P1MDOUT bits of pins configured as Analog Inputs should
explicitly be set to logic 0 (Open-Drain output mode) and the associated
Port Data bits should be set to logic 1 (high-impedance).

 96 Chapter 5 System Clock, Crossbar and GPIO

5.5 Crossbar and GPIO SFRs
The Special Function Registers which are programmed to configure the
Crossbar and the GPIO are discussed in this section.

XBR0 (Crossbar Register 0)
XBR0 SFR address is 0xE1 and upon reset has a value 0x00.

Bit Symbol Description

7 CP0E
Comparator 0 Output Enable Bit.
0: CP0 unavailable at Port pin.
1: CP0 routed to Port pin.

6 ECI0E

PCA0 External Counter Input Enable Bit.
0: PCA0 External Counter Input unavailable at Port
 pin.
1: PCA0 External Counter Input (ECI0) routed to
 Port pin.

5-3 PCA0ME

PCA0 Module I/O Enable Bits.
000: All PCA0 I/O unavailable at Port pins.
001: CEX0 routed to Port pin.
010: CEX0, CEX1 routed to 2 Port pins.
011: CEX0, CEX1, and CEX2 routed to 3 Port pins.
100: CEX0, CEX1, CEX2, and CEX3 routed to 4
 Port pins.
101: CEX0, CEX1, CEX2, CEX3, and CEX4 routed
 to 5 Port pins.
110: RESERVED
111: RESERVED

2 UART0EN
UART0 I/O Enable Bit.
0: UART0 I/O unavailable at Port pins.
1: UART0 TX routed to P0.0, and RX routed to
 P0.1

1 SPI0EN
SPI0 Bus I/O Enable Bit.
0: SPI0 I/O unavailable at Port pins.
1: SPI0 SCK, MISO, MOSI, and NSS routed to 4
 Port pins.

0 SMB0EN
SMBus0 Bus I/O Enable Bit.
0: SMBus0 I/O unavailable at Port pins.
1: SMBus0 SDA and SCL routed to 2 Port pins.

Table 5.4 XBR0 (Crossbar Register 0)

 Chapter 5 System Clock, Crossbar and GPIO 97

XBR1 (Crossbar Register 1)
XBR1 SFR address is 0xE2 and upon reset has a value 0x00.

Bit Symbol Description

7 SYSCKE
/SYSCLK Output Enable Bit.
0: /SYSCLK unavailable at Port pin.
1: /SYSCLK routed to Port pin.

6 T2EXE
T2EX Input Enable Bit.
0: T2EX unavailable at Port pin.
1: T2EX routed to Port pin.

5 T2E
T2 Input Enable Bit.
0: T2 unavailable at Port pin.
1: T2 routed to Port pin.

4 INT1E
/INT1 Input Enable Bit.
0: /INT1 unavailable at Port pin.
1: /INT1 routed to Port pin.

3 T1E
T1 Input Enable Bit.
0: T1 unavailable at Port pin.
1: T1 routed to Port pin.

2 INT0E
/INT0 Input Enable Bit.
0: /INT0 unavailable at Port pin.
1: /INT0 routed to Port pin.

1 T0E
T0 Input Enable Bit.
0: T0 unavailable at Port pin.
1: T0 routed to Port pin.

0 CP1E
CP1 Output Enable Bit.
0: CP1 unavailable at Port pin.
1: CP1 routed to Port pin.

Table 5.5 XBR1 (Crossbar Register 1)

 98 Chapter 5 System Clock, Crossbar and GPIO

XBR2 (Crossbar Register 2)
XBR2 SFR address is 0xE3 and upon reset has a value 0x00.

Bit Symbol Description

7 WEAKPUD
Weak Pull-Up Disable Bit.
0: Weak pull-ups globally enabled.
1: Weak pull-ups globally disabled.

6 XBARE
Crossbar Enable Bit.
0: Crossbar disabled. All pins on Ports 0, 1, 2, and
 3, are forced to Input mode.
1: Crossbar enabled.

5 - UNUSED. Read = 0, Write = don't care.

4 T4EXE
T4EX Input Enable Bit.
0: T4EX unavailable at Port pin.
1: T4EX routed to Port pin.

3 T4E
T4 Input Enable Bit.
0: T4 unavailable at Port pin.
1: T4 routed to Port pin.

2 UART1E
UART1 I/O Enable Bit.
0: UART1 I/O unavailable at Port pins.
1: UART1 TX and RX routed to 2 Port pins.

1 EMIFLE

External Memory Interface Low-Port Enable
Bit.
0: P0.7, P0.6, and P0.5 functions are determined
 by the Crossbar or the Port latches.
1: If EMI0CF.4 = ‘0’ (External Memory Interface is
 in Multiplexed mode) P0.7 (/WR), P0.6 (/RD),
 and P0.5 (ALE) are ‘skipped’ by the Crossbar
 and their output states are determined by the
 Port latches and the External Memory Interface.
1: If EMI0CF.4 = ‘1’ (External Memory Interface is
 in Non-multiplexed mode) P0.7 (/WR) and P0.6
 (/RD) are ‘skipped’ by the Crossbar and their
 output states are determined by the Port
 latches and the External Memory Interface.

0 CNVSTE
External Convert Start Input Enable Bit.
0: CNVSTR unavailable at Port pin.
1: CNVSTR routed to Port pin.

Table 5.6 XBR2 (Crossbar Register 2)

 Chapter 5 System Clock, Crossbar and GPIO 99

P0 (Port0 Data Register)
P0 SFR address is 0x80 and upon reset has a value 0xFF.

Bit Symbol Description

7-0 P0.[7:0]

Port0 Output Latch Bits.
(Write - Output appears on I/O pins per XBR0,
XBR1, XBR2, and XBR3 Registers)
0: Logic Low Output.
1: Logic High Output (open if corresponding
 P0MDOUT.n bit = 0).
(Read - Regardless of XBR0, XBR1, XBR2, and
XBR3 Register settings).
0: P0.n pin is logic low.
1: P0.n pin is logic high.

Table 5.7 P0 (Port0 Data Register)

P0MDOUT (Port0 Output Mode Register)
P0MDOUT SFR address is 0xA4 and upon reset has a value 0x00.

Bit Symbol Description

7-0 P0MDOUT.[7:0]

Port0 Output Mode Bits.
0: Port Pin output mode is configured as
 Open-Drain.
1: Port Pin output mode is configured as
 Push-Pull.

Table 5.8 P0MDOUT (Port0 Output Mode Register)

 100 Chapter 5 System Clock, Crossbar and GPIO

P1 (Port1 Data Register)
P1 SFR address is 0x90 and upon reset has a value 0xFF.

Bit Symbol Description

7-0 P1.[7:0]

Port1 Output Latch Bits.
(Write - Output appears on I/O pins per XBR0, XBR1,
XBR2, and XBR3 Registers)
0: Logic Low Output.
1: Logic High Output (open if corresponding
 P1MDOUT.n bit = 0).
(Read - Regardless of XBR0, XBR1, XBR2, and XBR3
Register settings).
0: P1.n pin is logic low.
1: P1.n pin is logic high.

Table 5.9 P1 (Port1 Data Register)

P1MDOUT (Port1 Output Mode Register)
P1MDOUT SFR address is 0xA5 and upon reset has a value 0x00.

Bit Symbol Description

7-0 P1MDOUT.[7:0]

Port1 Output Mode Bits.
0: Port Pin output mode is configured as
 Open-Drain.
1: Port Pin output mode is configured as
 Push-Pull.

Table 5.10 P1MDOUT (Port1 Output Mode Register)

P1MDIN (Port1 Input Mode Register)
P1MDIN SFR address is 0xBD and upon reset has a value 0xFF.

Bit Symbol Description

7-0 P1MDIN.[7:0]

Port 1 Input Mode Bits.
0: Port Pin is configured in Analog Input
 mode. The digital input path is disabled (a
 read from the Port bit will always return ‘0’).
 The weak pull-up on the pin is disabled.
1: Port Pin is configured in Digital Input mode.
 A read from the Port bit will return the logic
 level at the Pin. The state of the weak pull-up is
 determined by the WEAKPUD bit

Table 5.11 P1MDIN (Port1 Input Mode Register)

 Chapter 5 System Clock, Crossbar and GPIO 101

P2 (Port2 Data Register)
P2 SFR address is 0xA0 and upon reset has a value 0xFF.

Bit Symbol Description

7-0 P0.[7:0]

Port2 Output Latch Bits.
(Write - Output appears on I/O pins per XBR0,
XBR1, XBR2, and XBR3 Registers)
0: Logic Low Output.
1: Logic High Output (open if corresponding
 P2MDOUT.n bit = 0).
(Read - Regardless of XBR0, XBR1, XBR2, and
XBR3 Register settings).
0: P2.n pin is logic low.
1: P2.n pin is logic high.

Table 5.12 P2 (Port2 Data Register)

P2MDOUT (Port2 Output Mode Register)
P2MDOUT SFR address is 0xA6 and upon reset has a value 0x00.

Bit Symbol Description

7-0 P2MDOUT.[7:0]

Port2 Output Mode Bits.
0: Port Pin output mode is configured as
 Open-Drain.
1: Port Pin output mode is configured as
 Push-Pull.

Table 5.13 P2MDOUT (Port2 Output Mode Register)

 102 Chapter 5 System Clock, Crossbar and GPIO

P3 (Port3 Data Register)
P3 SFR address is 0xB0 and upon reset has a value 0xFF.

Bit Symbol Description

7-0 P3.[7:0]

Port3 Output Latch Bits.
(Write - Output appears on I/O pins per XBR0,
XBR1, XBR2, and XBR3 Registers)
0: Logic Low Output.
1: Logic High Output (open if corresponding
 P3MDOUT.n bit = 0).
(Read - Regardless of XBR0, XBR1, XBR2, and
XBR3 Register settings).
0: P3.n pin is logic low.
1: P3.n pin is logic high.

Table 5.14 P3 (Port3 Data Register)

P3MDOUT (Port3 Output Mode Register)
P3MDOUT SFR address is 0xA7 and upon reset has a value 0x00.

Bit Symbol Description

7-0 P3MDOUT.[7:0]

Port3 Output Mode Bits.
0: Port Pin output mode is configured as
 Open-Drain.
1: Port Pin output mode is configured as
 Push-Pull.

Table 5.15 P3MDOUT (Port3 Output Mode Register)

 Chapter 5 System Clock, Crossbar and GPIO 103

P3IF (Port 3 Interrupt Flag Register)
P3IF SFR address is 0xAD and upon reset has a value 0x00.

Bit Symbol Description

7 IE7

External Interrupt 7 Pending Flag
0: No falling edge has been detected on P3.7 since
 this bit was last cleared.
1: This flag is set by hardware when a falling edge
 on P3.7 is detected.

6 IE6

External Interrupt 6 Pending Flag
0: No falling edge has been detected on P3.6 since
 this bit was last cleared.
1: This flag is set by hardware when a falling edge
 on P3.6 is detected.

5-4 - UNUSED. Read = 00b, Write = don’t care.

3 IE7CF

External Interrupt 7 Edge Configuration
0: External Interrupt 7 triggered by a falling edge on
 the IE7 input.
1: External Interrupt 7 triggered by a rising edge on
 the IE7 input.

2 IE6CF

External Interrupt 6 Edge Configuration
0: External Interrupt 6 triggered by a falling edge on
 the IE6 input.
1: External Interrupt 6 triggered by a rising edge on
 the IE6 input.

1-0 - UNUSED. Read = 00b, Write = don’t care.

Table 5.16 P3IF (Port 3 Interrupt Flag Register)

5.6 Ports 4 through 7

All Port pins on Ports 4 through 7 can be accessed as General-Purpose
I/O (GPIO) pins by reading and writing the associated Port Data
registers, a set of SFRs which are byte-addressable.

A Read of a Port Data register (or Port bit) will always return the logic
state present at the pin itself, regardless of whether the Crossbar has
allocated the pin for peripheral use or not.

 104 Chapter 5 System Clock, Crossbar and GPIO

The SFRs associated with Ports 7 to 4 are P74OUT and the individual
Port Data registers, P4, P5, P6 and P7. These SFRs are described next.

P74OUT (Ports 7-4 Output Mode Register)
P74OUT SFR address is 0xB5 and upon reset has a value 0x00.

Bit Symbol Description

7 P7H
Port7 Output Mode High Nibble Bit.
0: P7.[7:4] configured as Open-Drain.
1: P7.[7:4] configured as Push-Pull.

6 P7L
Port7 Output Mode Low Nibble Bit.
0: P7.[3:0] configured as Open-Drain.
1: P7.[3:0] configured as Push-Pull.

5 P6H
Port6 Output Mode High Nibble Bit.
0: P6.[7:4] configured as Open-Drain.
1: P6.[7:4] configured as Push-Pull.

4 P6L
Port6 Output Mode Low Nibble Bit.
0: P6.[3:0] configured as Open-Drain.
1: P6.[3:0] configured as Push-Pull.

3 P5H
Port5 Output Mode High Nibble Bit.
0: P5.[7:4] configured as Open-Drain.
1: P5.[7:4] configured as Push-Pull.

2 P5L
Port5 Output Mode Low Nibble Bit.
0: P5.[3:0] configured as Open-Drain.
1: P5.[3:0] configured as Push-Pull.

1 P4H
Port4 Output Mode High Nibble Bit.
0: P4.[7:4] configured as Open-Drain.
1: P4.[7:4] configured as Push-Pull.

0 P4L
Port4 Output Mode Low Nibble Bit.
0: P4.[3:0] configured as Open-Drain.
1: P4.[3:0] configured as Push-Pull.

Table 5.17 P74OUT (Port 7-4 Output Mode Register)

 Chapter 5 System Clock, Crossbar and GPIO 105

Px (Ports x Data Register)
x is 4 to 7. P4, P5, P6 and P7 SFR addresses are 0x84, 0x85, 0x86 and
0x96 respectively and upon reset have a value 0xFF.

Bit Symbol Description

7-0 Px.[7:0]

Portx Output Latch Bits.
Write - Output appears on I/O pins.
0: Logic Low Output.
1: Logic High Output (Open-Drain if corresponding
 P74OUT bit = 0).
Read - Returns states of I/O pins.
0: Px.n pin is logic low.
1: Px.n pin is logic high.

Table 5.18 Px (Port x Data Register)

 106 Chapter 5 System Clock, Crossbar and GPIO

5.7 Tutorial Questions
1. Four toggle switches (SW3, SW2, SW1 and SW0) are connected

to Port 2 [7:4]. Four LEDs (LED3, LED2, LED1, and LED0) are
connected to Port 3 [3:0]. Write the code to initialize the ports
accordingly. The output port pins for LED must be in push-pull
mode. Disable global weak pull-ups. If only a part of the port is
used, make sure that the configuration and mode of the unused
pins are not disturbed.

2. When a toggle switch is ON, it presents a logic 0 at the Port 2
input. A LED turns ON when a logic 1 is set at the Port 3 output
pin. If a switch (SW3 .. SW0) is ON, the corresponding LED
(LED3 .. LED0) should be turned ON; OFF otherwise. Write the
code to read the status of the switches and turn ON/OFF the
respective LEDs.

3. What are the various external oscillator circuits that may be
connected to the C8051F020 micro-controller and how do these
affect the programming bits in the OSCXCN register?

4. Write a function to initialize the clock to use the internal oscillator
at 8 MHz. The function prototype is -

 void Init_Int_Osc(void);

The missing clock detector has to be disabled.

5. The C8051F020 micro-controller is to be connected to receive
commands from a peripheral device using UART1 serial
communication in Mode 1 at 9600 baud rate. Timer 4 is used to
generate the baud rate. System Clock used is 22.1184 MHz
external crystal oscillator.

(a) Write a function to configure and enable the crossbar and

Port 0 for UART1 communication. Transmit pin is to be set in
push-pull mode. The function prototype is -

void Init_Port(void);

(You can assume that UART0 is unused)

 Chapter 5 System Clock, Crossbar and GPIO 107

(b) Write a function to set up the timer and UART1. The function
prototype is –

void Init_UART1_T4(void);

 UART1 interrupts have to be enabled and set to high

priority.

 (You can assume that the system clock has been properly

setup by another function)

(c) Show the working of how you have calculated the Timer 4
Capture Register reload value for 9600 baud rate.

6

C8051F020 C Programming

6.0 Introduction 110
6.1 Register Definitions, Initialization and Startup

Code 110
Basic C program structure

6.2 Programming Memory Models 111
Overriding the default memory model, Bit-valued data,
Special Function Registers, Locating Variables at absolute
addresses

6.3 C Language Control Structures 115
Relational Operators, Logical Operators, Bitwise Logical
Operators, Compound Operators, Making Choices (if..else,
switch..case), Repetition (for loop, while loop), Waiting for
Events, Early Exits

6.4 Functions 122
Standard functions - Initializing System Clock, Memory Model
Used for a Function

6.5 Interrupt Functions 123
Timer 3 Interrupt Service Routine, Disabling Interrupts before
Initialization, Timer 3 Interrupt Initialization, Register Banks

6.6 Reentrant Functions 127
6.7 Pointers 127

A Generic Pointer in KeilTM C, Memory Specific Pointers

6.8 Summary of Data Types 129
6.9 Tutorial Questions 130

 110 Chapter 6 C8051F020 C Programming

6.0 Introduction
This chapter introduces the KeilTM C compiler for the Silicon Labs
C8051F020 board. We assume some familiarity with the C programming
language to the level covered by most introductory courses in the C
language.

Experienced C programmers, who have little experience with the
C8051F020 architecture, should become familiar with the system. The
differences in programming the C8051F020 in C, compared to a
standard C program, are almost all related to architectural issues. These
explanations will have little meaning to those without an understanding of
the C8051F020 chip.

The KeilTM C compiler provided with the C8051F020 board does not
come with a floating point library and so the floating point variables and
functions should not be used. However if you require floating point
variables, a full license for the KeilTM C compiler can be purchased.

6.1 Register Definitions, Initialization and Startup
Code
C is a high level programming language that is portable across many
hardware architectures. This means that architecture specific features
such as register definitions, initialization and start up code must be made
available to your program via the use of libraries and include files.

For the 8051 chip you need to include the file reg51.h or using the
C8051F020-TB development board include the file c8051f020.h:

#include <reg51.h>

Or

#include < c8051f020.h >

These files contain all the definitions of the C8051F020 registers. The
standard initialization and startup procedures for the C8051F020 are
contained in startup.a51. This file is included in your project and will be
assembled together with the compiled output of your C program. For
custom applications, this startup file might need modification.

 Chapter 6 C8051F020 C Programming 111

Basic C program structure
The following is the basic C program structure; all the programs you will
write will have this basic structure.

//--
// Basic blank C program that does nothing
// other than disable the watch dog timer
//--
// Includes
//--

#include <c8051f020.h> // SFR declarations

void main (void)
{

 // disable watchdog timer
 WDTCN = 0xde;
 WDTCN = 0xad;

 while(1); // Stops program terminating and

// restarting
}
//--

Note: All variables must be declared at the start of a code block. You
cannot declare variables amongst the program statements.

You can test this program in the Silicon Labs IDE (Integrated
Development Environment). You won’t see anything happening on the
C8051F020 development board, but you can step through the program
using the debugger.

6.2 Programming Memory Models
The C8051F020 processor has 126 Bytes of directly addressable internal
memory and up to 64 Kbytes of externally addressable space. The KeilTM
C compiler has two main C programming memory models, SMALL and
LARGE which are related to these two types of memory. In the SMALL
memory model the default storage location is the 126 Bytes of internal
memory while in the LARGE memory model the default storage location
is the externally addressed memory.

 112 Chapter 6 C8051F020 C Programming

The default memory model required is selected using the pragma
compiler control directive:

#pragma small
int X;

Any variable declared in this file (such as the variable X above) will be
stored in the internal memory of the C8051F020.

The choice of which memory model to use depends on the program, the
anticipated stack size and the size of data. If the stack and the data
cannot fit in the 128 Bytes of internal memory then the default memory
model should be LARGE, otherwise SMALL should be used.

Yet another memory model is the COMPACT memory model. This
memory model is not discussed in this chapter. More information on the
compact model can be found in the document Cx51 Compiler User’s
Guide for KeilTM Software.

You can test the different memory models with the Silicon Labs IDE
connected to the C8051F020-TB development board. Look at the symbol
view after downloading your program and see in which memory
addresses the compiler has stored your variables.

Overriding the default memory model
The default memory model can be overridden with the use of KeilTM C
programming language extensions that tell the compiler to place the
variables in another location. The two main available language
extensions are data and xdata:

int data X;
char data Initial;
int xdata Y;
char xdata SInitial;

The integer variable X and character variable Initial are stored in the first
128 bytes of internal memory while the integer variable Y and character
variable SInitial are stored in the external memory overriding any default
memory model.

 Chapter 6 C8051F020 C Programming 113

Constant variables can be stored in the read-only code section of the
C8051F020 using the code language extension:

const char code CR=0xDE;

In general, access to the internal memory is the fastest, so frequently
used data should be stored here while less frequently used data should
be stored on the external memory.

The memory storage related language extensions, bdata, and
associated data types bit, sbit, sfr and sfr16 will be discussed in the
following sections. Additional memory storage language extensions
including, pdata and idata, are not discussed in this chapter; refer to the
document Cx51 Compiler User’s Guide for KeilTM Software for
information on this.

Bit-valued Data
Bit-valued data and bit-addressable data must be stored in the bit-
addressable memory space on the C8051F020 (0x20 to 0x2F). This
means that bit- valued data and bit-addressable data must be labeled as
such using the bit, sbit and bdata.

Bit-addressable data must be identified with the bdata language
extension:

int bdata X;

The integer variable X declared above is bit-addressable.

Any bit valued data must be given the bit data type, this is not a standard
C data type:

bit flag;

The bit-valued data flag is declared as above.

The sbit data type is used to declare variables that access a particular
bit field of a previously declared bit-addressable variable.

 114 Chapter 6 C8051F020 C Programming

bdata X;
sbit X7flag = X^7; /* bit 7 of X */

X7flag declared above is a variable that references bit 7 of the integer
variable X.

You cannot declare a bit pointer or an array of bits.

The bit valued data segment is 16 bytes or 128 bits in size, so this limits
the amount of bit-valued data that a program can use.

Special Function Registers
As can be seen in the include files c8051f020.h or reg51.h, the special
function registers are declared as a sfr data type in KeilTM C. The value
in the declaration specifies the memory location of the register:

/* BYTE Register */
sfr P0 = 0x80;
sfr P1 = 0x90;

Extensions of the 8051 often have the low byte of a 16 bit register
preceding the high byte. In this scenario it is possible to declare a 16 bit
special function register, sfr16, giving the address of the low byte:

sfr16 TMR3RL = 0x92; // Timer3 reload value
sfr16 TMR3 = 0x94; // Timer3 counter

The memory location of the register used in the declaration must be a
constant rather than a variable or expression.

 Chapter 6 C8051F020 C Programming 115

Locating Variables at absolute addresses
Variables can be located at a specific memory location using the _at_
language extension:

int X _at_ 0x40;

The above statement locates the integer X at the memory location 0x40.

The _at_ language extension can not be used to locate bit addressable
data.

6.3 C Language Control Structures
C language is a structured programming language that provides
sequence, selection and repetition language constructs to control the
flow of a program.

The sequence in which the program statements execute is one after
another within a code block. Selection of different code blocks is
determined by evaluating if and else if statements (as well as switch-
case statements) while repetition is determined by the evaluation of for
loop or while loop constructs.

Relational Operators
Relational operators compare data and the outcome is either True or
False. The if statements, for loops and while loops can make use of C
relational operators. These are summarized in Table 6.1.

Operator Description
== Equal to
!= Not Equal to
< Less than
> Greater than

<= Less than or equal to
>= Greater than or equal to

Table 6.1 Relational Operators

 116 Chapter 6 C8051F020 C Programming

Logical Operators
Logical operators operate on Boolean data (True and False) and the
outcome is also Boolean. The logical operators are summarized in Table
6.2.

Operator Description
&& Logical AND
|| Logical OR
! Logical NOT

Table 6.2 Logical Operators

Bitwise Logical Operators
As well as the Logical operators that operate on integer or character
data, the C language also has bitwise logical operators. These are
summarized in Table 6.3.

Operator Description
& Bitwise AND
| Bitwise OR
~ Bitwise NOT
^ Bitwise XOR

Table 6.3 Bit valued logical operators

Bitwise logical operators operate on each bit of the variables individually.

Example:

X = 0x40 | 0x21;

The above statement will assign the value 0x61 to the variable X.

0x40 0100 0000
0x21 0010 0001 bitwise logical OR

0x61 0110 0001

 Chapter 6 C8051F020 C Programming 117

Compound Operators
C language provides short cut bitwise operators acting on a single
variable similar to the +=, -=, /= and *= operators. These are summarized
in Tables 6.4 and 6.5.

Operator Description Example Equivalent
+= Add to variable X += 2 X=X + 2

-= Subtract from
variable

X -= 1 X=X - 1

/= Divide variable X /= 2 X=X / 2

*= Multiply variable X *= 4 X=X * 4

Table 6.4 Compound Arithmetic Operators

Operator Description Example Equivalent
&= Bitwise And with

variable
X &= 0x00FF X=X & 0x00FF

|= Bitwise Or with
variable

X |= 0x0080 X=X | 0x0080

^= Bitwise XOR with
variable

X ^= 0x07A0 X=X | 0x07A0

Table 6.5 Compound Bitwise Operators

Example: Initializing Crossbar and GPIO ports

We can initialize the crossbar and GPIO ports using the C bitwise
operators.

//-- Configures the Crossbar and GPIO ports
 XBR2 = 0x40; //-- Enable Crossbar and weak

// pull-ups (globally)
 P1MDOUT |= 0x40; //-- Enable P1.6 (LED) as push-pull output

 118 Chapter 6 C8051F020 C Programming

Making Choices

Is the
Condition

True?

Execute

Statement Block2

Execute

Statement Block 1

Yes No

Figure 6.1 Flow chart for selection

Choices are made in the C language using an if else statement.

if (x > 10)
 { y=y+1; }
else
 { y=y-1; }

When the Condition is evaluated as True the first block is executed and if
the Condition evaluates as being False the second block is executed.

More conditions can be created using a sequence of if and else if
statements.

if (x > 10)
 { y=y+1; }
else if (x > 0)
 { y=y-1; }
 else
 { y=y-2; }

In some situations, when there is a list of integer or character choices a
switch-case statement can be used.

 Chapter 6 C8051F020 C Programming 119

switch (x)
{
 case 5:
 y=y+2; break;
 case 4: case 3:
 y=y+1; break;
 case 2: case 1:
 y=y-1; break;
 default:
 y=y-2; break;
}

When the variable x in the switch statement matches one of the case
statements, that block is executed. Only when the break statement is
reached does the flow of control break out of the switch statement. The
default block is executed when there are no matches with any of the
case statements.

If the break statements are missing from the switch-case statement
then the flow will continue within the switch-case block until a break
statement or the end of the switch-case block is reached.

Repetition
Numeric repetition of a code block for a fixed set of times is achieved
using a for loop construct.

int i;
int sum=0;
for(i = 0; i<10; i++)
{
 sum = sum + i;
}

 120 Chapter 6 C8051F020 C Programming

Figure 6.2 Flow chart for a for loop

When the looping required is not determined by a fixed number of counts
but more complex conditions we normally use the while loop construct to
control the process.

Is the
condition

true?

Execute
statement(s)
within the loop Yes

No

Completed
the required
number of

times?

Execute
statement(s) within
the loop

Yes

No

Execute statement that
follows the loop

Execute statement that
follows the loop

Figure 6.3 Flow chart for a while loop

The while loop repeats the loop while the condition specified is true.

 Chapter 6 C8051F020 C Programming 121

Waiting for Events
We can use a while loop to wait for the crystal oscillator valid flag to be
set.

//-- wait till XTLVLD pin is set
while (!(OSCXCN & 0x80));

Early Exits
When executing a code block or a loop, sometimes it is necessary to exit
the current code block. The C language provides several mechanisms to
do this.

The break statement will move the flow of control outside the end of the
current loop.

int i;
int sum=0;
for(i = 0; i<10; i++)
{
 sum = sum + i;
 if (sum > 25) break;
}

The continue statement skips the remaining code in the current loop,
but continues from the start of the code block of the loop (after
incrementing and checking that the loop should not terminate)

int i;
int sum=0;
for(i = 0; i<10; i++)
{
 if (i == 5) continue;
 sum = sum + i;
}

 122 Chapter 6 C8051F020 C Programming

6.4 Functions
Functions in C are declared using the return data type, the data type of
the parameters and the body of the function.

Unsigned long square (int x)
{
 return x*x;
}

Standard functions in KeilTM C are not re-entrant and so should not be
called recursively. This is the case as parameters and local variables are
stored in a standard location for all calls to a particular function. This
means that recursive calls will corrupt the data passed as arguments to
the function as well as the local variables.

A stack, starting straight after the last data stored in internal memory is
used to keep track of function calls, but only the return address is stored
on the stack, so conserving space. You can see the operation of the
stack in the Silicon Labs IDE.

Test the functions using the Silicon Labs IDE connected to the
c8051f020 development board. You will notice that sometimes the
compiler optimizations will result in some variables sharing the same
memory address!

Standard Function - Initializing System Clock
We can write a C function to initialize the system clock.

 Chapter 6 C8051F020 C Programming 123

void Init_Clock(void)
{
 OSCXCN = 0x67; //-- 0110 0111b
 //-- External Osc Freq Control Bits (XFCN2-0) set
 // to 111 because crystal frequency > 6.7 MHz
 //-- Crystal Oscillator Mode (XOSCMD2-0) set to 110

 //-- wait till XTLVLD pin is set
 while (!(OSCXCN & 0x80));

 OSCICN = 0x88; //-- 1000 1000b
 //-- Bit 2 : Internal Osc. disabled (IOSCEN = 0)
 //-- Bit 3 : Uses External Oscillator as System
 // Clock (CLKSL = 1)
 //-- Bit 7 : Missing Clock Detector Enabled (MSCLKE = 1)
}

Memory Model Used for a Function
The memory model used for a function can override the default memory
model with the use of the small, compact or large keywords.

int square (int x) large
{
 return x*x;
}

6.5 Interrupt Functions

The basic 8051 has 5 possible interrupts which are listed in Table 6.6.

 124 Chapter 6 C8051F020 C Programming

Interrupt No. Description Address
0 External INT 0 0x0003

1 Timer/ Counter 0 0x000B

2 External INT 1 0x0013

3 Timer/ Counter 1 0x001B

4 Serial Port 0x0023

Table 6.6 8051 Interrupts

The Cx51 has extended these to 32 interrupts to handle additional
interrupts provided by manufacturers. The 22 interrupts implemented in
Silicon Labs C8051F020 are discussed in detail in Chapter 11.

An interrupt function is declared using the interrupt key word followed by
the required interrupt number.

int count;

void timer1_ISR (void) interrupt 3
{
 count++;
}

Interrupt functions must not take any parameters and not return any
parameters. Interrupt functions will be called automatically when the
interrupt is generated; they should not be called in normal program code,
this will generate a compiler error.

Timer 3 Interrupt Service Routine
We can write a timer 3 Interrupt service routine that changes the state of
an LED depending on whether a switch is pressed-

 Chapter 6 C8051F020 C Programming 125

//-- This routine changes the state of the LED
// whenever Timer3 overflows.

void Timer3_ISR (void) interrupt 14
{
 unsigned char P3_input;
 TMR3CN &= ~(0x80); //-- clear TF3

 P3_input = ~P3;
 if (P3_input & 0x80) //-- if bit 7 is set,
 { // then switch is pressed
 LED_count++;

if ((LED_count % 10) == 0)
{ //-- do every 10th count

 LED = ~LED; //-- change state of LED
 LED_count = 0;
 }
 }
}

Disabling Interrupts before Initialization
Before using interrupts (such as the timer interrupts) they should be
initialized. Before initialization interrupts should be disabled so that there
is no chance that the interrupt service routine is called before
initialization is complete.

EA = 0; //-- disable global interrupts

When initialization has been completed the interrupts can be enabled.

EA = 1; //-- enable global interrupts

 126 Chapter 6 C8051F020 C Programming

Timer 3 Interrupt Initialization
We can put the timer 3 initialization statements within a C function

//-- Configure Timer3 to auto-reload and generate
//-- an interrupt at interval specified by <counts>
//-- using SYSCLK/12 as its time base.

void Init_Timer3 (unsigned int counts)
{
 TMR3CN = 0x00; //-- Stop Timer3; Clear TF3;
 //-- use SYSCLK/12 as timebase

 TMR3RL = -counts; //-- Init reload values
 TMR3 = 0xffff; //-- set to reload immediately
 EIE2 |= 0x01; //-- enable Timer3 interrupts
 TMR3CN |= 0x04; //-- start Timer3 by setting

// TR3 (TMR3CN.2) to 1
}

Register Banks
Normally a function uses the default set of registers. However there are 4
sets of registers available in the C8051F020. The register bank that is
currently in use can be changed for a particular function via the using
KeilTM C language extension.

int count;

void timer1 (void) interrupt 3 using 1
{
 count++;
}

The register bank specified by the using statement ranges from 0 to 3.
The register bank can be specified for normal functions, but are more
appropriate for interrupt functions. When no register bank is specified in
an interrupt function the state of the registers must be stored on the
stack before the interrupt service routine is called. If a new register bank
is specified then only the old register bank number needs to be copied to
the stack significantly improving the speed of the interrupt service
routine.

 Chapter 6 C8051F020 C Programming 127

6.6 Reentrant Functions
Normal KeilTM C functions are not re-entrant. A function must be declared
as re-entrant to be able to be called recursively or to be called
simultaneously by two or more processes. This capability is often
required in real-time applications or in situations when interrupt code and
non-interrupt code need to share a function.

int fact (int X) reentrant
{
 if (X==1) { return 1; }
 else { return X*fact(X-1); }
}

A re-entrant function stores the local variables and parameters on a
simulated stack. The default position of the simulated stack is at the end
of internal memory (0xFF). The starting positions of the simulated stack
are initialized in startup.a51 file.

The simulated stack makes use of indirect addressing; this means that
when you use the debugger and watch the values of the variables they
will contain the address of the memory location where the variables are
stored. You can view the internal RAM (address 0xff and below) to see
the parameters and local variable placed on the simulated stack.

6.7 Pointers
Pointers in C are a data type that stores the memory addresses. In
standard C the data type of the variable stored at that memory address
must also be declared:

int * X;

A Generic Pointer in KeilTM C
Since there are different types of memory on the C8051F020 processor
there are different types of pointers. These are generic pointers and
memory specific pointers. In standard C language we need to declare
the correct data type that the pointer points to. In KeilTM C we also need
to be mindful of which memory model we are pointing to when we are
using memory-specific pointers. Generic pointers remove this restriction,

 128 Chapter 6 C8051F020 C Programming

but are less efficient as the compiler needs to store what memory model
is being pointed to. This means that a generic pointer takes 3 bytes of
storage - 1 byte to store the type of memory model that is pointed to and
two bytes to store the address.

int * Y;
char * ls;
long * ptr;

You may also explicitly specify the memory location that the generic
pointer is stored in, to override the default memory model.

int * xdata Y;
char * idata ls;
long * data ptr;

Memory Specific Pointers
A memory specific pointer points to a specific type of memory. This type
of pointer is efficient as the compiler does not need to store the type of
memory that is being pointed to. The data type of the variable stored at
the memory location must be specified.

int xdata * Y;
char data * ls;
long idata * ptr;

You may also specify the memory location that the memory-specific
pointer is stored in, to override the default memory model.

int data * xdata Y;
char xdata * idata ls;
long idata * data ptr;

 Chapter 6 C8051F020 C Programming 129

6.8 Summary of Data Types
In Table 6.7, we have summarized the Data Types that are available in
the Cx51 compiler. The size of the data variable and the value range is
also given.

Data Type Bits Bytes Value Range
 bit 1 - 0 to 1

signed char 8 1 -128 to +127

unsigned char 8 1 0 to 255

enum 8/16 1 or 2 -128 to +127 or
-32768 to +32767

signed short 16 2 -32768 to +32767

unsigned
short

16 2 0 to 65535

signed int 16 2 -32768 to +32767

unsigned int 16 2 0 to 65535

signed long 32 4 -2147483648 to 2147483647

unsigned long 32 4 0 to 4294967295

float 32 4 ±1.175494E-38 to
±3.402823E+38

sbit 1 - 0 to 1

sfr 8 1 0 to 255

sfr16 16 2 0 to 65535

Table 6.7 Data Types

 130 Chapter 6 C8051F020 C Programming

6.9 Tutorial Questions

1. What are the different memory models available for programs

using the KeilTM C compiler?

2. How do you set the default memory model?

3. How do you override the default memory model for the storage of

a variable in your program?

4. How do you override the default memory model for a function?

5. How large is internal memory on the C8051F020?

6. How large is the bit addressable data space on the C8051F020?

7. Why can’t normal KeilTM C functions be used for recursive or re-

entrant calls?

8. How does a KeilTM C re-entrant function work?

9. What is the number of standard interrupts on the C8051F020?

10. What is the total number of interrupts that the KeilTM C compiler

can support?

11. What happens when an interrupt service routine is called?

12. How does the use of different register banks make interrupt calls

more efficient?

13. How many register banks are available on the C8051F020?

14. How much memory space does a KeilTM C generic pointer take

and why?

15. How much memory does a memory specific pointer take in KeilTM

C?

16. What is the difference between “int * xdata ptr” and “int

xdata * ptr” in KeilTM C?

7

Expansion Board for C8051F020
Target Board

7.0 Introduction 132
Expansion Board Block Diagram

7.1 Starting a Project 134
7.2 Blinking Using Software Delays 135

Watchdog Timer, Configuring the Crossbar, Port
Configuration, Software Delays, The main() Routine

7.3 Blinking Using a Timer 138
Polling Timer 3, Timer 3 Interrupts, Interrupts in General,
Changing the Clock Speed

7.4 Programming the LCD 142
LCD Controller – Overall Structure, Pin Definitions,
Instructions, Initialization Requirements, LCD Software,
Synchronization – the Busy Bit, 8-Bit Initialization Sequence,
LCD Integration

7.5 Reading Analog Signals 151
Initialization, Interrupt Service Routines, The Main Code

7.6 Expansion Board Pictures 153
7.7 Circuit Diagram of the Expansion Board 154
7.8 Expansion Board Physical Component Layout 155

 132 Chapter 7 Expansion Board For C8051F020 Target Board

7.0 Introduction
The Silicon Labs C8051F020 evaluation board has pin header
connections for all 8 ports so it is not difficult to attach additional devices.
Nevertheless it is much more convenient and robust to mount switches
and displays on a printed circuit board, which can then connect using the
DIN96 connector – which also has all the ports available. The board we
have developed uses the upper four ports which leave the lower, more
versatile, ports available for other uses.

This chapter will explain the expansion board and provide a number of
example programs which are designed to help learning to program the
Silicon Labs C8051F020. Some of these will require the expansion board
(or similar hardware) while others only use the Silicon Labs C8051F020
Evaluation board itself.

Expansion Board Block Diagram

Figure 7.1 Expansion board Functional Block diagram

The various sub-sections of the expansion board are explained next.

96 pin
DIN

connector
to Silicon

Labs
MCU
Board

Control P7 b2-0
3 16 Character x 2 Lines

Liquid Crystal Display P6 Data
8

P5 b7-4 Four LEDs4

P5 b3-0 Four Push Button Switches4

P4 DIP 8 Switches8

AIN0.2 Potentiometer
AIN0.3 Temperature Sensor
DAC1 LCD Contrast (via JP1)
DAC0 Test Point 2

 Chapter 7 Expansion Board For C8051F020 Target Board 133

Liquid Crystal Display

The LCD provided on the expansion board is a 2 lines x 16 characters
display module built around the Hitachi HD44780 micro-controller. The
LCD has a parallel interface and thus very convenient for connection to
the digital I/O port of C8051F020. The 8 data lines of the LCD are
connected to Port 6 and the control lines to the lower half of Port 7 (P7.0,
P7.1 and P7.2).

The LCD greatly enhances the versatility of the expansion board since a
convenient means of displaying program output is now at the disposal of
the user. Further details of the LCD and how to program it are given in
section 7.4.

LEDs

The Silicon Labs development board has only one LED, connected to
P1.6. In most applications, several more LEDs are required, often to
depict port status and program diagnostics. Thus four additional LEDs
are provided on the board, connected to the upper half of Port 5 (P5.4 –
P5.7).

Pushbutton Switches

Pushbuttons and toggle switches are required in any micro-processor
development system for generating digital input signals. The Silicon Labs
development board has only one pushbutton, connected to P3.7. 4
additional pushbuttons are provided on the expansion board; these are
connected to the lower half of Port 5 (P5.0 to P5.3).

Toggle Switches

To further increase the capabilities of the expansion board to provide
digital inputs, there are 8 toggle switches on it. These are in the form of
DIP (Dual-In-Line package) micro-switches connected to Port 4.

Potentiometer

The potentiometer allows the ADC to be used with no danger of the input
exceeding the maximum rated voltage. By altering a jumper pin (JP1),
the board can be configured to use the potentiometer to change the
contrast of the LCD display.

 134 Chapter 7 Expansion Board For C8051F020 Target Board

Temperature Sensor

Either a thermistor or a three-terminal temperature sensor (e.g. LM335)
can be used. The pull up resistor should be changed to suit the device.

LCD Contrast

JP1 selects the source of the contrast voltage for the LCD, which is
either the 10k trim pot (VR2) or the DAC1 output. Using the latter allows
software control of the LCD contrast.

Test Points

The four analog signals on the board are all available on test points
which allow an oscilloscope to be easily connected. Analog and digital
grounds, and the 3.3 V supply, are also provided.

Power Supply

A very small current is drawn from the 3.3 V supply of the development
board for biasing the potentiometer and temperature sensor. The LCD
operates from +5 V generated using a 5 V regulator chip which runs off
the unregulated supply on the Silicon Labs C8051F020 board. This can
be grounded with a push button switch (via a current limiting resistor) so
that the LCD can be reset. The LCD requires about 1.5 mA which
increases to 8 mA when the switch is pressed.

7.1 Starting A Project
In common with many Windows based software development
environments, the Silicon Labs Integrated Development Environment
(IDE) uses a project file to specify the actions to be performed on the set
of files it is currently working with. With a simple project there will only be
a single file involved but larger projects quickly expand to a number of .c
source files and perhaps assembly files too. The project file stores other
information too, including the state of the IDE desktop.

A sensible approach is to start with an empty directory for a new project.
Using the menus: Project/New Project followed by
Project/Save Project As and navigating to your new directory results in a
workspace file (.wsp). Similarly, create a new .c file and save it as well.

At this point you have a .wsp and a .c file in your directory, but the .c file
is not actually part of the project. Project/Add Files to Project will allow
you to add the file to the project.

 Chapter 7 Expansion Board For C8051F020 Target Board 135

You can now proceed to write your program. It can be compiled with F7,
downloaded with Alt-D, and run with F5. To combine the compile and
download steps go to Project/Target Build Configuration and check the
Enable automatic download/connect after build check box.

7.2 Blinking Using Software Delays
To come to grips with programming a new microcontroller it is best to get
something working – the simpler the better. A good place to start is
blinking a LED. Using software delays, rather than an interrupt, is the
simplest approach, although it is generally a poor practice. The program
to do this is trivial but there are overheads involved in configuring the
Silicon Labs C8051F020 which must be understood.

The program shown in Figure 7.2 defines the pins which will be used
within your program. Here two variables are declared, one called
LED_16 and the other butt_37. LED_16 is pin 6 of port 1 while butt_37 is
pin 7 of port 3.

In a real program you should use names which relate to the function of
the devices. For example butt_run (run button) and LED_toocold
(LED to indicate temperature status) might be appropriate for a particular
application.

Figure 7.2 Defining I/O Pins

The Silicon Labs C8051F020 has many internal registers which control
how it operates. These must be configured at run time – by a program as
it executes. Although this could be performed by a block of code at the
start of main() it is clearer to use a separate function – here, in Figure
7.3, called init().

Watchdog Timer
The watchdog timer (WDT) is enabled by default at system start-up. Its
purpose is to reset the microcontroller, should the running program lose
control – perhaps by entering an infinite loop. The first two lines of init()

sbit LED_16 = P1^6; // green LED: 1 = ON; 0 = OFF
sbit butt_37 = P3^7; // on-board push button:
 // 0 = pressed, 1 = not pressed

 136 Chapter 7 Expansion Board For C8051F020 Target Board

function disable the WDT, which avoids the overhead of regularly
resetting it.

Figure 7.3 Initializing Internal Registers

To disable the WDT, two writes are needed to the watch dog timer
control register (WDTCN). These must occur within 4 clock cycles of
each other so interrupts should not be enabled at the time.

Configuring the Crossbar
The crossbar is controlled by three registers - XBR0, XBR1 and XBR2. It
is rather complex to setup the crossbar and a good approach is to use
the Silicon Labs’ Configuration Utility software to select the mapping you
require. In this example the only bit which needs to be set is in XBR2
called XBARE – Cross Bar Enable. If the crossbar is not enabled, all the
port pins remain as inputs only so an LED cannot be driven.

Port Configuration
With the crossbar enabled, the port pins will pull high via the internal
resistors, allowing the pin to source a few µA, when a logic 1 is written to
the pin. Internal transistors will pull the pin low in response to a logic 0
allowing it to sink up to 50 mA. The LED on P1.6 and the four LEDs on
the expansion board must be driven high to illuminate and so the port
pins that drive them need to be configured in push-pull output mode.
They can then easily source the required 10 mA for the LED. The output

void init(void)
{
 WDTCN = 0xDE; // Watchdog Timer Ctrl Register
 WDTCN = 0xAD; // Disable watch dog timer
 //---- Configure the XBRn Registers
 XBR0 = 0x00; //
 XBR1 = 0x00; // Enable the crossbar,
 XBR2 = 0x40; // weak pullups enabled

 //---- Port configuration (1 = Push Pull Output)
 P0MDOUT = 0x00; // Output configuration for P0
 P1MDOUT = 0x40; // Output configuration for P1,
 // LED_16 is push pull
 P2MDOUT = 0x00; // Output configuration for P2
 P3MDOUT = 0x00; // Output configuration for P3
 P74OUT = 0x48; // Output configuration for P4-7
 // (P7[0..3] push pull)
 P5 |= 0x0F; //- P5[3:0] Open Drain used as input
 P4 = 0xFF; //- P4 Open Drain used as input
}

 Chapter 7 Expansion Board For C8051F020 Target Board 137

mode of each of the pins of the lower four ports (P0 to P3) is individually
configurable while with the upper ports (P4 to P7) they are set in groups
of four pins.

A good programming practice is to configure only those pins that are
actually needed is.

Software Delays
Because the MCU operates very fast it is necessary to slow it down if a
blinking LED is to be observed. The program in Figure 7.4 shows three
functions which provide different amount of delays when called in a
program. huge_delay() calls large_delay() which in turn calls
small_delay(). Each has a loop which counts down. Calling
small_delay(10) will give a delay of about 40 µs while huge_delay(10)
will take about 2.3 s. Of course, if the clock is different from 2.0 MHz the
delays will be different too.

While software delays can be quite accurate, if calibrated, it is difficult to
do so and they lose any time taken by interrupts. They also tie up the
processor while running, so other tasks such as reading the keyboard
are ignored.

Figure 7.4 The software delay routines

void small_delay(char d)
{
 while (d--);
}

void large_delay(char d)
{
 while (d--)
 small_delay(255);
}

void huge_delay(char d)
{
 while (d--)
 large_delay(255);
}

 138 Chapter 7 Expansion Board For C8051F020 Target Board

The main() Routine
Whereas many C programs run for a time and then exit, a program in a
microcontroller normally runs forever. This can be seen in Figure 7.5
where main() has a while loop that runs for ever (remember that 1 is
Boolean true, 0 is false).

Toggling the LED depends on the status of the push button connected to
port pin P3.7. The push button is read and, when pressed, the LED is
continuously illuminated. There is a second read operation which is less
obvious. The port pin 1.6, which drives the LED, is first read. The read
data is then inverted, and finally written back to P1.6; so it is storing the
status of the LED, as well as driving it.

Figure 7.5 main() routine

Another point to note is that while the delay is about 180 ms, the LED
flashes at about 2.8 Hz. This is because the loop must run twice for the
LED to go through one cycle.

void main(void)
{
 init();
 while (1)
 {
 large_delay(200); // approx. 180ms delay
 if (butt_37) // push button not pressed
 LED_16 = !LED_16; // toggle LED
 else // push button pressed
 LED_16 = 1; // LED continuously illuminated
 }
}

7.3 Blinking Using a Timer
Polling Timer 3
The Silicon Labs C8051F020 has 5 timers which run independently of
the executing program. It is possible, and sometimes useful, to read
them directly. In the next example Timer 3 will free run, reloading itself
with zero when it overflows so it divides by the maximum possible –
10000H. The actual reload frequency is 2.54 Hz when the main clock is
2 MHz (2,000,000 / 12 / 65536).

The program shown in Figure 7.6 has the initialization code for the timer
which ensures it reloads after <counts> intervals. The main() routine

 Chapter 7 Expansion Board For C8051F020 Target Board 139

examines the high byte of Timer 3 and uses a bit mask to determine
when the count has passed halfway.

Figure 7.6 Polling Timer 3

Timer 3 Interrupt
An interrupt can be generated when Timer 3 overflows. This causes
execution to jump to its interrupt service routine (ISR) which has priority
14, and is identified to the compiler by interrupt 14 (in Figure 7.7). The
actual ISR code is only two lines. The timer flag bit is what actually
generates the interrupt – it is set when the timer overflows and it is the
programmers responsibility to clear it. It is part of the Timer 3 control
register and is not bit addressable so an AND operation must be used
with a bit mask which has a value 0111 1111b.

Interrupts in General

Interrupts can be tricky to use. It is necessary to be very careful when
accessing data which is shared between an ISR and another function,
say, main(). This is because main() doesn’t know when it will be
interrupted; it could be partway through reading a variable when an ISR
is called that changes the same variable. Even though this sequence of
events might be very unlikely, after many thousands of interrupts, it WILL

void main(void)
{
 init();
 Timer3_Init(0x0000); // Init Timer3 to divide by 65536

 while (1)
 {
 LED_16 = ((TMR3H & 0x80) == 0x80); // The high bit of
 // TMR3 controls the
 // LED
 }
}

void Timer3_Init(int counts)
{
 TMR3CN = 0x00; // Stop Timer3; Clear TF3;
 // use SYSCLK/12 as timebase
 TMR3RL = -counts; // Init reload values
 TMR3 = 0xffff; // set to reload immediately
 TMR3CN |= 0x04; // start Timer3
}

 140 Chapter 7 Expansion Board For C8051F020 Target Board

happen. This results in a program which works well almost all the time,
but occasionally does something strange. Globally disabling interrupts
(by setting the EA bit to zero) before accessing shared data from outside
an interrupt will prevent the above corruption.

Figure 7.7 – Using Timer 3 Interrupt

Changing the Clock Speed
Up to this point the Silicon Labs C8051F020 has been running at about
2 MHz, using its internal oscillator. The actual frequency is inaccurate
and can be between 1.5 and 2.4 MHz. For accurate timing, a quartz
crystal is preferable and the higher speed (22.11845 MHz) is usually an
advantage. However, power consumption is greater at higher clock
speeds.

Figure 7.8 shows the code required to switch from the internal oscillator
to the external crystal. This could happen at any time but it makes sense
to do it early, just after switching off the watchdog timer within the init()
function. The External Oscillator Control Register is configured for a high
speed crystal. Then, following a short delay, the bit 7 is polled until it

void main(void)
{
 init();
 Timer3_Init(SYSCLK / 12 / 10); // Init Timer3 to generate
 // interrupts at 10 Hz
 EA = 1; // interrupts on
 while (1); // main spins forever
}

void Timer3_Init(int counts)
{
 TMR3CN = 0x00; // Stop Timer3; Clear TF3;
 // use SYSCLK/12 as time base
 TMR3RL = -counts; // Init reload values
 TMR3 = 0xffff; // set to reload immediately
 EIE2 |= 0x01; // enable Timer3 interrupts
 TMR3CN |= 0x04; // start Timer3
}

void Timer3_ISR(void) interrupt 14
{
 TMR3CN &= ~(0x80); // clear TF3
 LED_16 = ~LED_16; // change state of LED
}

 Chapter 7 Expansion Board For C8051F020 Target Board 141

indicates the crystal has stabilized. Only at that point does the operation
switch to the external oscillator.

Figure 7.8 Switching to the crystal oscillator.

There are two things to note in the new Timer 3 ISR shown in Figure 7.9.
The first is that with the faster oscillator the LED will flash too fast and
appear to be continuously illuminated. To make it flash slow enough to
be visible, an additional byte is used within the ISR to divide the blinking
rate, in this case, by five. Four out of five times the ISR is exited
prematurely; on the fifth the switch statement is executed.

The second feature shows a simple finite state machine. State machines
are useful when a sequence of actions or events must be detected or
created. In this case the four states loop in numerical order but they can
become much more complex in some scenarios.

Figure 7.9 LED Chaser: State machine in an Interrupt Service Routine

 OSCXCN = 0x67; // EXTERNAL Oscillator
 // Control Register
 for (n = 0; n != 255; n++); // wait for osc to start
 while ((OSCXCN & 0x80) == 0); // wait for xtal to stabilize

 OSCICN = 0x0C; // INTERNAL Oscillator
 // Control Register

void Timer3_ISR(void) interrupt 14
{
 static uchar state = 0;
 static uchar ctr = 0;

 TMR3CN &= ~(0x80); // clear TF3
 if (ctr--)
 return;
 ctr = 4; // divide by 5

 switch (state) // state machine
 {
 case 0:
 state = 1;
 P5 = 0x1F; break; // LED 1 on
 case 1:
 state = 2;
 P5 = 0x2F; break; // LED 2 on
 case 2:
 state = 3;
 P5 = 0x4F; break; // LED 3 on
 case 3:
 state = 0;
 P5 = 0x8F; break; // LED 4 on
 default: state = 0; break; // for safety

}

 142 Chapter 7 Expansion Board For C8051F020 Target Board

7.4 Programming the LCD
Liquid Crystal Displays (LCDs) are manufactured by many different
companies and come in a vast array of shapes and sizes. They range
from basic 3 digit 7-segment displays, which are used for numeric
indicators, to front panels for consumer products with custom icons, to
full graphical displays for portable games.

The module we have used is quite versatile and commonly found in low
volume specialized equipment. It is based around the Hitachi HD44780
controller, has a parallel interface, and displays 2 lines of text, with 16
characters on a line. A character cannot appear in any position on the
display; it must be in one of the predefined locations. This is what
distinguishes a text display from a graphical one.

Each character is formed from a grid of 5 x 8 pixels. These are
predefined and are based on the ASCII character set, although 8
additional custom characters can be defined and programmed.

LCD Controller - Overall Structure
The HD44780 is a microcontroller in its own right, albeit a specialized
one. It is interfaced via an 8 or 4-bit parallel data bus with an additional 3
control lines. It responds to a dozen different commands and does the
complicated job of driving the actual display with no effort from the
programmer. Figure 7.10 shows the functional blocks of the LCD used in
the expansion board.

Figure 7.10 LCD Module Functional Blocks

M
P

U

In
te

rfa
ce

8
 data
lines

3
 control

lines

 Character Generator
(CG) RAM
64 Bytes

Display Data
(DD) RAM
128 Bytes

Liquid Crystal Display

DDRAM
Address
Counter

CGRAM
Address
Counter

 Chapter 7 Expansion Board For C8051F020 Target Board 143

Characters to be displayed are stored in Display Data RAM (DDRAM).
You will observe in Figure 7.11 that there is far more DDRAM than the
characters on the display. This means only part of DDRAM is actually
visible while the reminder is off to one side of the display. The visible
window can be scrolled to show any part of DDRAM.

Figure 7.11 2 Line x 16 Character LCD Window

The characters in the first row start at address 00h and the second row
starts at 40h. The value in the DDRAM Address Counter is where the
next character will be written. It can be set to any address. Normally the
module is configured so that subsequent characters go into the next
highest location (DDRAM is incremented). This results in writing from left
to right on the display. The simplest approach is to leave the display
window at 00h.

The Character Generator RAM (CGRAM) holds user defined characters.
Programming these is not covered in this text.

Pin Definitions

Figure 7.12 shows the pin out of the LCD module. Three pins are used
for the power supply, ground and contrast adjustment. HD22780S
modules require a +5V supply, however the HD44780U controller can
operate on a range of supplies, down to 2.7V. The expansion board
includes a 5V regulator so the S variant may be used too.

There are 11 signal lines altogether. These include the 8-bit bidirectional
data bus and three control lines which are write-only. They require clean
digital signals which would normally be 0 or 5V. However they are
tolerant of 3.3V systems.

Be aware that the data bus is bidirectional, so at times the LCD controller
will want to drive the pins high or low. A connected microcontroller must
not attempt to drive the bus at the same time, except through pull-up

39h 00h
Line 1

40h 79h
Line 2

2 rows of 16
characters visible

The C8051F020
port pins are
also tolerant of
5V!

 144 Chapter 7 Expansion Board For C8051F020 Target Board

resistors. With an 8051F020 this is done by NOT using push-pull outputs
on the LCD data port, globally enabling weak pull-ups, and writing FFH
to the data port before attempting to read it.

Many microcontrollers are able to drive their pins much faster than the
HD44780 is able to read them. For example, the C8051F020 can toggle
a pin in 90 ns when running off its 22 MHz crystal while the HD44780
has minimum pulse requirements of almost 1us. Some sort of delay must
be built into your program to ensure your commands reach the LCD.

Signal Pin
Number

Full
Name Function

VSS 1 Ground 0V common connection

VDD 2
Supply
Voltage +5V supply

VO 3 Contrast When varied between 0 and VSS
changes the optimum viewing angle.

E 6 Enable

↑ (low to high transaction) The LCD
controller reads the state of RS
and RW

Note: to write from the LCD (e.g. the
busy bit – see later) E should
remain high.

↓ (high to low transaction) The LCD
controller reads the data bus

RS 4
Register
Select

0: Instruction Register
1: Data Register

RW 5
Read or

Write
0: Write to LCD
1: Read from LCD

D[0..7] 7 - 14
8-bit Data

Bus
To convey instructions or data to the
LCD controller

 15,16 No Connection

Figure 7.12 LCD Module Pin Definitions

Instructions
Instructions are used for configuring the LCD controller, to pass it data
which will be displayed, and to read status information back from it.
Figure 7.13 shows the instructions in numerical order.

 Chapter 7 Expansion Board For C8051F020 Target Board 145

 Control Data Bits

Instruction E R
S

R
W 7 6 5 4 3 2 1 0 Description

Exec
Time
(µs)

Clear Display ↑↓ 0 0 0 0 0 0 0 0 0 1 Clears entire display. Sets DDRAM
address counter to zero. 1520

Return Home ↑↓ 0 0 0 0 0 0 0 0 1 -
Sets DDRAM address counter to
zero and returns display to original
position if shifted.

1520

Entry Mode
SET ↑↓ 0 0 0 0 0 0 0 1 I/D S

Sets how curser and display will
move when data is written.
I/D=1: Increment, ID=0: Decrement
S=1: shift display

37

Display On/Off
Control ↑↓ 0 0 0 0 0 0 1 D C B

Controls visibility of display, curser
and blinking feature.
D=1: display on, C=1: curser on,
B=1: curser character blinks

37

Cursor or
Display Shift ↑↓ 0 0 0 0 0 S/C R/L - -

Moves curser or shifts display.
S/C=1, display shift, S/C=0, curser
move
R/L=1, right shift, R/L=0, left shift

37

Function Set ↑↓ 0 0 0 0 1 DL N F - -

Interface data length (DL=1:8
bits, DL=0: 4 bits)
Number of display lines (N=1:2lines,
N=0,1:line)
Character Font (F=1:5x10 dots,
F=0,5x8 dots)

37

Set CGRAM
Address ↑↓ 0 0 0 1 b[5..0] Address

Character Generator RAM address.
CGRAM data is sent and received
following this command

37

Set DDRAM
Address ↑↓ 0 0 1 b[6..0] Address

Display Data RAM address. DDRAM
data is sent and received following
this command

37

Read Busy
Flag &

Address
↑1 0 1 BF Address Counter

BF=1 indicates internal operation
still being performed. Also returns
address counter contents (CG or DD
RAM, depending on what was last
accessed)

37

Write to
RAM ↑↓ 1 0 b[7..0] write data Writes data to CG or DD RAM 37

Read from
RAM ↑↓ 1 1 b[7..0] read data Reads data from CG or DD RAM 37

Figure 7.13 Hitachi HD44780 Instruction Set

Instructions are conveyed to the LCD controller by setting RS and RW as
listed and setting E high then low. The data is clocked into the controller
on the falling edge (↓).

Initialization Requirements
When the power is first applied to a HD44780 based module it will self
initialize provided the power supply rises at the correct rate. Interestingly
the default wakeup state has the display off! With a normal power supply,

 146 Chapter 7 Expansion Board For C8051F020 Target Board

the internal reset cannot be relied on so a series of instructions must be
issued. The first is Function Set, which should be repeated three times to
ensure initialization.

An option when initializing is to use 4-bit mode. This can be useful if your
micro has a limited number of port pins available. A total of 7 pins are
actually used since the three control lines are still needed but the whole
interface can fit into a single port. It is achieved by transferring all data
bytes in two 4-bit nibbles (using D4-D7). Hence it is a little bit slower and
a bit more complex to program. As the 8051F020 is well endowed with
ports we have used 8-bit mode throughout.

LCD Software
Communication with the LCD can generally be divided into either data
which is to be displayed, or commands which affect how it operates. The
difference is caused by the state of the two control lines, RS and RW.
Figure 7.14 shows the two functions for writing either data or a command
byte.

Figure 7.14 Communicating with the LCD

char lcd_dat(char dat)
{
 lcd_busy_wait();
 LCD_CTRL_PORT = LCD_CTRL_PORT | RS_MASK; // RS = 1
 LCD_CTRL_PORT = LCD_CTRL_PORT & ~RW_MASK; // RW = 0
 LCD_DAT_PORT = dat;
 pulse_E();
 return 1;
}

void lcd_cmd(char cmd)
{
 lcd_busy_wait();
 LCD_CTRL_PORT = LCD_CTRL_PORT & ~RS_MASK; // RS = 0
 LCD_CTRL_PORT = LCD_CTRL_PORT & ~RW_MASK; // RW = 0
 LCD_DAT_PORT = cmd;
 pulse_E();
}

 Chapter 7 Expansion Board For C8051F020 Target Board 147

Figure 7.15 Preprocessor macros

These functions rely on several #defines and a macro for pulsing the
enable line which are shown in Figure 7.15. The MASK values reflect the
bits the control lines are connected to.

Synchronization – the Busy Bit
The LCD is actually quite slow to execute commands or process data
(relative to a microcontroller anyway!) so it is very easy to send it
information faster than it can be processed. The execution times are
listed in Figure 7.13 but these are based on an internal clock speed of
270 KHz which could vary.

The designers appreciated this and have provided a mechanism so the
LCD can indicate to the microcontroller when it can, or cannot, accept
data. Bit 7 of the data bus is known as the busy bit and its status can be
read by the microcontroller. The most efficient time to do so is just prior
to sending a new character.

Figure 7.16 Waiting for the busy bit

#define LCD_DAT_PORT P6 // LCD is in 8 bit mode
#define LCD_CTRL_PORT P7 // 3 control pins on P7
#define RS_MASK 0x01 // for assessing LCD_CTRL_PORT
#define RW_MASK 0x02
#define E_MASK 0x04
#define pulse_E();\
 small_delay(1);\
 LCD_CTRL_PORT = LCD_CTRL_PORT | E_MASK;\
 small_delay(1);\
 LCD_CTRL_PORT = LCD_CTRL_PORT & ~E_MASK;\

void lcd_busy_wait(void)
{
 LCD_DAT_PORT = 0xFF; // allow port pins to float
 LCD_CTRL_PORT = LCD_CTRL_PORT & ~RS_MASK; // RS = 0
 LCD_CTRL_PORT = LCD_CTRL_PORT | RW_MASK; // RW = 1
 small_delay(1);
 LCD_CTRL_PORT = LCD_CTRL_PORT | E_MASK; // E = 1
 do { // wait for busy flag to drop
 small_delay(1);
 } while ((LCD_DAT_PORT & 0x80) != 0);
}

 148 Chapter 7 Expansion Board For C8051F020 Target Board

Figure 7.16 shows the function lcd_busy_wait(). It is quite simple - the
control lines are configured appropriately and the code waits for the busy
bit to drop. Small delays are required to give the LCD time to read the
signals. Note that the enable signal changes from being an edge
sensitive clock to a level sensitive enable for this read operation.

8-Bit Initialization Sequence
In the example program lcd_init() (Figure 7.17) the initialization
commands are issued. Delays are also specified to allow time for the
instructions to execute. Note that the busy bit cannot be used until after
the first two instructions – a software delay is needed.

Remember that each time a command byte is written to the data port, the
E bit must be raised and lowered (↑↓). On the rising edge, RS and RW
are read, on the falling edge the command is executed.

A point to note is that the optimization level is lowered from the default
maximum of 9 to 7. This is necessary to prevent the compiler cleverly
removing code it considers superfluous!

Figure 7.17 Initializing the LCD

#pragma OPTIMIZE (7)
void lcd_init(void)
{
 LCD_CTRL_PORT = LCD_CTRL_PORT & ~RS_MASK; // RS = 0
 LCD_CTRL_PORT = LCD_CTRL_PORT & ~RW_MASK; // RW = 0
 LCD_CTRL_PORT = LCD_CTRL_PORT & ~E_MASK; // E = 0
 large_delay(200); // 16ms delay

 LCD_DAT_PORT = 0x38; // set 8-bit mode
 pulse_E();
 large_delay(50); // 4.1ms delay

 LCD_DAT_PORT = 0x38; // set 8-bit mode
 pulse_E();
 large_delay(2); // 1.5ms delay

 LCD_DAT_PORT = 0x38; // set 8-bit mode
 pulse_E();
 large_delay(2); // 1.6ms delay

 lcd_cmd(0x06); // curser moves right
 lcd_cmd(0x01); // clear display
 lcd_cmd(0x0E); // display and curser on
}
#pragma OPTIMIZE (9)

 Chapter 7 Expansion Board For C8051F020 Target Board 149

Delay at least 15 ms following power up.

Control Data Data Description

E RS RW B7 B6 B5 B4 B3 B2 B1 B0 Hex

↑↓ 0 0 0 0 1 1 1 0 0 0 38

Function Set
8 bits, 2 lines,
5x8 font

Delay at least 4.1 ms

Control Data Data Description

E RS RW B7 B6 B5 B4 B3 B2 B1 B0 Hex

↑↓ 0 0 0 0 1 1 1 0 0 0 38

Function Set
8 bits, 2 lines,
5x8 font

Delay at least 0.1 ms

Control Data Data Description

E RS RW B7 B6 B5 B4 B3 B2 B1 B0 Hex

↑↓ 0 0 0 0 1 1 1 0 0 0 38

Function Set
8 bits, 2 lines,
5x8 font

Delay at least 37 µs, or use busy bit

Control Data Data Description

E RS RW B7 B6 B5 B4 B3 B2 B1 B0 Hex

↑↓ 0 0 0 0 0 0 0 1 1 0 06

Entry mode set
Display on,
Increment curser,
Don’t shift display.

Delay at least 37 µs, or use busy bit

Control Data Data Description

E RS RW B7 B6 B5 B4 B3 B2 B1 B0 Hex

↑↓ 0 0 0 0 0 0 0 0 0 1 01

Clear display

Delay at least 37 µs, or use busy bit

Control Data Data Description

E RS RW B7 B6 B5 B4 B3 B2 B1 B0 Hex

↑↓ 0 0 0 0 0 0 1 1 1 0 0E

Display on/off
ctrl. Display on,
curser on, No
blink.

 150 Chapter 7 Expansion Board For C8051F020 Target Board

LCD Integration
While it is nice to be able to write a character to the display, it is much
more convenient to write entire strings – especially if they can be
formatted. Astute readers may have noticed that the function
lcd_dat() in Figure 7.14 returned char which appeared unnecessary.
It does so to take advantage of a feature of the KeilTM compiler which has
the ability to redefine built-in library functions.

This can be done by renaming lcd_dat() as putchar(), which is an
ANSI C function in the stdio library. KeilTM have written putchar() to
send characters to the serial port. By replacing it with lcd_dat() they
now go to the LCD.

Replacing one function with another doesn’t appear very helpful. The
beauty of this approach is that other standard functions call putchar()
to achieve their low level output. One of the more useful I/O functions is
printf() which can now send formatted output to the LCD! This can
be seen in Figure 7.18.

Figure 7.18 Writing a string to the LCD

This will quickly write past the end of the display and, after 64 characters,
wrap around to the second line, eventually coming back to overwrite the
first line. A function called lcd_goto() is also very useful and is shown in
Figure 7.19. To write to the start of the first line use lcd_goto(0), the
second line would use lcd_goto(0x40);

Figure 7.19 Moving the text entry point

void main(void)
{
 int ctr;
 init();
 P5 = 0x0F;
 lcd_init();
 while (1)
 {
 printf("Hello World %4d ", ctr++);
 huge_delay(3);
 }
}

void lcd_goto(char addr)
{
 lcd_cmd(addr | 0x80);
}

 Chapter 7 Expansion Board For C8051F020 Target Board 151

void Timer3_Init(int counts)
{
 TMR3CN = 0x02; // Stop Timer3; Clear TF3
 // use SYSCLK as timebase
 TMR3RL = -counts; // Init reload values
 TMR3 = 0xFFFF; // set to reload immediately
 EIE2 |= 0x01; // enable Timer3 interrupts
 TMR3CN |= 0x04; // start Timer3
}

void ADC0_Init(void)
{
 ADC0CN = 0x05; // ADC0 disabled; normal tracking
 // mode; ADC0 conversions are initiated
 // on overflow of Timer3; ADC0 data is
 // left-justified
 REF0CN = 0x07; // enable temp sensor, on-chip VREF,
 // and VREF output buffer
 AMX0SL = 0x02; // Select AIN0.2 ADC mux output
 ADC0CF = 0x86; // ADC conversion clock = SYSCLK/16,
 // PGA gain = 0.5
 EIE2 |= 0x02; // enable ADC interrupts
}

7.5 Reading Analog Signals
This section presents a program which uses the 12-bit analog to digital
converter (ADC0) in the C8051F020 to read the potentiometer which is
connected to AIN0.2.

Initialization
Normally analog readings are required at regular intervals. In the next
example Timer 3 will be used to initiate conversions at a SAMPLE_RATE
times each second. To allow capturing fast changing signals, the system
clock is used directly, rather than dividing it by 12.

Figure 7.20 Timer and ADC Initialization.
Five ADC registers must be initialized. By setting AMX0SL to 8, instead
of 2, the on-chip temperature sensor can be selected. Remember that
even though interrupts are enabled for these two sources, they won’t be
executed until the EA bit is set.

Interrupt Service Routines
All that the Timer 3 ISR has to do is clear the overflow flag (TF3) which
generated the interrupt. The ADC ISR has a similar task and it must also
write the result somewhere that main() can read it. main() also needs
to know that a new result is available. This is the purpose of the bit
variable, adc_ready.

 152 Chapter 7 Expansion Board For C8051F020 Target Board

Figure 7.21 Interrupt Service Routines

The Main Code

Figure 7.22 The main() code

The key points to observe in main() are calling the various initialization
routines, activating the interrupts, and the way the flag adc_ready is
used to determine that a conversion is ready for display. In particular,
note that interrupts are switched off while accessing adc_result. This is
necessary to prevent the ADC ISR from changing the value half way
through printing it. All the same it is a poor practice to switch interrupts
off for a significant time (remember the LCD is quite slow). A better

void Timer3_ISR(void) interrupt 14
{
 TMR3CN &= ~(0x80); // clear TF3
}

void ADC0_ISR(void) interrupt 15 using 1
{
 AD0INT = 0; // clear ADC conversion
 // complete indicator
 adc_result = ADC0; // read ADC value
 adc_ready = 1;
}

uint adc_result; // adc value transferred here
bit adc_ready = 0; // flag from isr to main

void main(void)
{
 init();
 lcd_init();
 Timer3_Init(SYSCLK / SAMPLE_RATE); // initialize Timer3 to
 // overflow at SAMPLE_RATE
 ADC0_Init(); // init ADC
 AD0EN = 1; // enable ADC
 EA = 1; // Enable global interrupts
 while (1)
 {
 if (adc_ready)
 {
 EA = 0; // Disable interrupts
 adc_ready = 0;
 printf("ADC value %4u ", adc_result);
 EA = 1; // Enable interrupts
 lcd_goto(0x00);
 }
 }
}

 Chapter 7 Expansion Board For C8051F020 Target Board 153

approach is to use a second buffer to copy the result into, before printing
it. This is left as an exercise for the reader.

7.6 Expansion Board Pictures

Figure 7.23 Expansion Board

Figure 7.24 Expansion Board Connected to C8051F020-TB

 154 Chapter 7 Expansion Board For C8051F020 Target Board

7.7 Circuit Diagram of the Expansion Board
+3VD2 (+3.3VDC)
MONEN
P1.5
P1.2
P2.7
P2.4
P2.1
P3.6
P3.3
P3.0
P0.5
P0.2
P7.7

P7.4
P7.1
P6.6
P6.3
P6.0

P5.5
P5.2
P4.7
P4.4
P4.1
TCK
/RST

CP1-
CP0+
VREF0
AIN0.6
AIN0.3
AIN0.0

P1.7
P1.4
P1.1
P2.6
P2.3
P2.0
P3.5
P3.2
P0.7
P0.4
P0.1
P7.6

P7.3
P7.0
P6.5
P6.2

P5.7
P5.4
P5.1
P4.6
P4.3
P4.0
TDI
DGND (Digital Gnd)
DAC1
CP1+
VREF
VREF1

AIN0.2
AIN0.5

P1.6
P1.3
P1.0
P2.5
P2.2
P3.7
P3.4
P3.1
P0.6
P0.3
P0.0
P7.5

P7.2
P6.7
P6.4
P6.1

P5.6
P5.3
P5.0
P4.5
P4.2
TMS
TDO
VUNREG
DAC0
CP0-
VREFD
AIN0.7
AIN0.4
AIN0.1

The 96-pin I/O connector

XTAL1

+3VD2 (+3.3VDC)

AGND (Analog Gnd)

AGND (Analog Gnd)

DGND (Digital Gnd)1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

A

CON32

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

B

CON32

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

C

CON32

RSR/W
EN

DB0
DB1DB2DB3
DB4DB5DB6
DB7

NC2 NC1

RS 406-385

+3VD2 (+3.3VDC)

AGND (Analog Gnd)

DGND (Digital Gnd)

DGND

AGND

VCC

Power Coupling

t° TR1
Res Thermal

1
2
3
4
5
6
7
8

16
15
14
13
12
11
10
9

S1

SW DIP-8

LED1

LED2

LED3

LED4

P4.1
P4.0

P5.5

P5.7

P5.6

P5.4

P4.2
P4.3
P4.4
P4.5
P4.6
P4.7

AIN0.2

AIN0.3

P5.0

P5.1

P5.2

P5.3

0.5
100k

Pot1

330
R14

330
R15

1k
R16

330
R13

100

R3

100

R2

100

R1

100
R4

100

R7

100

R6

100

R5

100
R8

Components

AGND

AGND DGND

DGND

1k
R17

VCC

VCC

Test Points

AGND

DGND

AIN0.2

AIN0.3

DAC0

DAC1 Test Point 1

Test Point 2

Test Point 3

Test Point 4

Test Point 5

Test Point 6

VSS
VDD
VO

VO

RS
R/W
EN
DB0
DB1
DB2
DB3
DB4
DB5
DB6
DB7
NC1
NC2

DGND +5V

0.5
10k

Pot2

VCC

DGND

VSS
VDD
VO
RS
R/W
E
DB0
DB1
DB2
DB3
DB4
DB5
DB6
DB7
NC
NC

LCD1

LCD, 16-PIN

SW1

DGND

SW2

DGND

SW3

DGND

SW4

100nF
C1

100nF
C2

Power Reg

Vin Vout
GND

U1

DGND

+5V

SW5

100
R23

100
R19

100
R20

100
R21

100
R22

VUNREG

DGND

1k
R18

4.7uF
C4

LCD Reset Sw

100nF
C3

Modified to
pull up to +5V

KPT-1105D

Z4170

RS 173-675

Figure 7.25 Circuit diagram of the Versatile Expansion Board

 Chapter 7 Expansion Board For C8051F020 Target Board 155

7.8 Expansion Board Physical Component Layout

Figure 7.26 Expansion Board Physical Component Layout

8

Timer Operations and
Programming

8.0 Introduction 158
8.1 Functional Description 159
8.2 Timer Programming 160
8.3 Timer SFRs 161
8.4 Timers 0 and 1 Operating Modes 161

13-bit Timer Mode, 16-bit Timer Mode, 8-bit Auto-Reload
Mode, Split (two 8-bit) Timer Mode

8.5 Timers 2, 3 & 4 Operating Modes 164
16-bit Auto-Reload Mode, Capture Mode, Baud Rate
Generation

8.6 CKCON Register 170
8.7 Timers 0 and 1 SFRs 171

TMOD, TCON
8.8 Timer 2 SFRs 173

T2CON
8.9 Timer 3 SFRs 175

TMR3CN
8.10 Timer 4 SFRs 176

T4CON

8.11 Timer 2 - C Programming Example 178
8.12 Tutorial Questions 181

 158 Chapter 8 Timer Operations and Programming

8.0 Introduction
One of the many tasks that are normally performed by a CPU is to time
internal and external events. The microprocessor usually provides the
timing functions such as timeout delays and event counting by means of
software. Many a times, these functions are implemented using loops
within the software. This effectively takes a lot of CPU’s processing time.
A timer/counter is useful in the sense that it is able to handle various
timing applications independently; hence it frees the CPU of such tasks,
allowing it to do other urgent functions.

A timer/counter consists of a series of divide-by-two flip-flops (FF). Each
FF is clocked by the Q output of the previous FF, as shown in Figure 8.1.
Each stage, starting from the LSB F/F to the MSB F/F, generates an
output signal which is half the frequency of its own clock input. Thus a 3-
bit timer in Figure 8.1 will divide the input clock frequency by 8 (23).
Normally a timer/counter has added features like producing an interrupt
at the end of a count. By adding the timer overflow F/F to the counter, it
will aid to generate such an interrupt signal. Figure 8.1 shows that the
output of the last stage (MSB) clocks a timer overflow flag. The counter
will count from 000b to 111b and set the overflow flag on the transition
from 111b to 000b.The timing diagram is shown in Figure 8.2.

JKFF

J

K
Q

CLK
QN

Timer
Overflow
F/F or
Flag

VCC
VCC

3 bit Timer Flip
Flops

Clock
JKFF

J

K
Q

CLK
QN

JKFF

J

K
Q

CLK
QN

JKFF

J

K
Q

CLK
QN

LSB MSB
Figure 8.1 Schematic of a 3-Bit Timer

 Chapter 8 Timer Operations and Programming 159

 Clock

LSB

MSB

Count
0 1 2 3 4 5 6 7 0

Flag

Figure 8.2 Timing Diagram

8.1 Functional Description
Timers are used for:

• Interval timing
• Event counting
• Baud rate generation

In interval timing applications, a timer is programmed as a frequency
divider. In event counting applications, the counter is incremented
whenever there is an event (1-to-0 or 0-to-1 transition) at its
corresponding external input pin. Beside these two functions, the timers
can also provide the baud rate for the C8051F020’s internal serial port.
The C8051F020 contains 5 counter/timers. Table 8.1 lists all their
operating modes.

Mode Timer 0 & 1 Timer 2 Timer 3 Timer 4

0 13 bit counter/timer
16 bit

counter/timer
with capture

16 bit
timer with

auto-
reload

16 bit
counter/timer
with capture

1 16 bit counter/timer

16 bit
counter/timer

with auto-
reload

16 bit
counter/timer

with auto-
reload

2

8 bit counter/timer with
auto-reload.

Generate Baud rate
(Timer 1 only) for

UART0 and/or UART1

Baud rate
generator for

UART0

Baud rate
generator for

UART1

3
Two 8 bit

counter/timers
(Timer 0 only)

Table 8.1 C8051F020 Timers and Operating Modes

 160 Chapter 8 Timer Operations and Programming

Timer 0 and Timer 1 are nearly identical and have four primary modes of
operation. Timer 2 offers additional capabilities not available in Timers 0
and 1. Timer 3 is similar to Timer 2, but without the capture or Baud rate
generation modes. Timer 4 is identical to Timer 2, except it supplies
baud rate generation capabilities to UART1 instead. The main Timer
operation modes are discussed in the following sections.

The timers are fully independent, and each may operate in a different
mode. Timers 1, 2 and 4 may be used for UART baud rate generation in
mode 2. Chapter 10 has more information on baud rate generation.

8.2 Timer Programming
The timers can be programm ugh the following sequence: ed thro

A. For Timers 0 and 1:
 1. Select the desired clock by programming CKCON.3
 (T0M) or CKCON.4 (T1M). The clock input may be the
 system clock or the system clock divided by 12.

 2. Select the operating mode (TMOD.0/TMOD.1 or
 TMOD.4/TMOD.5)

 3. Write the starting value for count up sequence into the
 associated count registers (TL0, TL1, TH0 and TH1)

 4. Set the appropriate control bits, and turn on Timer
 (TCON.4 or TCON.6)

B. For Timer 3:
 1. Write the auto-reload value into the auto-reload registers
 (TMR3RLL and TMR3RLH)

 2. Write the starting value for count up sequence into the
 count registers (TMR3L and TMR3H)

 3. Select the desired clock source (T3XCLK) and frequency
 (T3M), set the control bits (TR3) and turn on Timer 3
 (TMR3CN)

 Chapter 8 Timer Operations and Programming 161

C. For Timers 2 and 4:
 1. Select the desired system clock frequency (CKCON)

 2. Write the auto-reload value into the associated capture
 registers if using auto-reload mode (RCAP2L, RCAP2H,
 RCAP4L and RCAP4H)

 3. Write the starting value for count up sequence into the
 associated count registers (TL2, TL4, TH2 and TH4)

 4. Select the mode (C/Tx, CP/RLx), set the appropriate
 control bits (TRx) and turn on Timer (T2CON and
 T4CON)

8.3 Timer SFRs
The 22 special function registers used to access and control the timers
are summarized in Table 8.2. Refer to Sections 8.7 to 8.10 for more
detail on each bit of the six timer control SFRs (CKCON, TCON, TMOD,
T2CON, TMR3CN and T4CON).

8.4 Timers 0 and 1 Operating Modes

13-Bit Timer Mode (Mode 0)
The 13-Bit Timer mode provides compatibility with the 8051’s
predecessor, the 8048, and is not generally used in new designs.
Therefore, there will be no further discussion on this mode.

16-Bit Timer Mode (Mode 1)
The 16-bit Timer mode is used by Timers 0 and 1 under Mode 1.
Overflow occurs on the FFFFH to 0000H transition of the count and sets
the timer overflow flag, TFx. A corresponding interrupt will occur if
enabled. C/Tx (TMOD.2 and TMOD.6 – refer to Figure 8.3 and Table
8.4) selects the timer's clock source. Clearing this bit selects the system
clock as the trigger input for the timer. When C/Tx is set to 1, high-to-low
transitions at the input pin Tx increment the count register (functions as a
counter). x = 0 or 1, as Timers 0 and 1 are configured in the same
manner.

 162 Chapter 8 Timer Operations and Programming

Affected
Timers

Timer
SFR Purpose Address Bit

Addressable
0, 1, 2
and 4 CKCON Clock Control 8EH No

TCON Timer Control 88H Yes
TMOD Timer Mode 89H No
TL0 Timer 0 Low Byte 8AH No
TL1 Timer 1 Low Byte 8BH No
TH0 Timer 0 High Byte 8CH No

0 and 1

TH1 Timer 1 High Byte 8DH No
T2CON Timer 2 Control C8H Yes

RCAP2L Timer 2 Low Byte
Capture CAH No

RCAP2H Timer 2 High Byte
Capture CBH No

TL2 Timer 2 Low Byte CCH No

2

TH2 Timer 2 High Byte CDH No
TMR3CN Timer 3 Control 91H No

TMR3RLL Timer 3 Low Byte
Reload 92H No

TMR3RLH Timer 3 High Byte
Reload 93H No

TMR3L Timer 3 Low Byte 94H No

3

TMR3H Timer 3 High Byte 95H No
T4CON Timer 4 Control C9H No

RCAP4L Timer 4 Low Byte
Capture E4H No

RCAP4H Timer 4 High Byte
Capture E5H No

TL4 Timer 4 Low Byte F4H No

4

TH4 Timer 4 High Byte F5H No

Table 8.2 Special Function Registers of C8051F020 Timers

Starting the timer by setting TRx (TCON.4 and TCON.6 – refer to Figure
8.3 and Table 8.6) does not reset the count register. The count register
should be initialized to the desired value before enabling the timer. If an
interrupt service routine is required, the interrupt flag is enabled and an
interrupt is generated whenever the timer overflows. This applies to all
timer modes, for Timers 0 to 4.

 Chapter 8 Timer Operations and Programming 163

8-Bit Auto-Reload Mode (Mode 2)
This mode configures Timers 0 and 1 to operate as 8 bit counter/timers
with automatic reload of the start value. Figure 8.3 shows the functional
block diagram and the SFRs associated. Both the counter/timers are
enabled and configured in Mode 2 in the same manner as in Mode 1.

TCLK

TMOD
T
1
M
1

T
1
M
0

C
/
T
1

G
A
T
E
1

G
A
T
E
0

C
/
T
0

T
0
M
1

T
0
M
0

 T
C

O
N

TF0
TR0

TR1
TF1

IE1
IT1
IE0
IT0

Interrupt
TL0

(8 bits)

ReloadTH0
(8 bits)

/INT0 TR0

T0

Crossbar

0

1

0

1

CKCON
T
4
M

T
2
M

T
1
M

T
0
M

SYSCLK

 12

GATE0

Figure 8.3 Block Diagram of Timer 0 in 8 Bit Auto-Reload Mode

The timer low byte (TLx) operates as an 8-bit timer while the timer high
byte (THx) holds a reload value. When the count in TLx overflows from
FFH to 00H, the timer flag is set and the value in THx is loaded into TLx.
Counting continues from the reload value up to the next FFH overflow,
and so on.

This mode is convenient as the timer overflows at specific periodic
intervals once TMOD and THx are initialized. TLx must be initialized to
the desired value before enabling the timer for the first count to be
correct.

Timer 1 can be used as an 8-bit baud rate generator for UART0 and/or
UART1 in mode 2.

 164 Chapter 8 Timer Operations and Programming

Split (Two 8-Bit) Timer Mode (Mode 3)
This mode applies to Timer 0 only. Under this mode, Timer 0 is split into
two 8 bit timers as shown in Figure 8.4. TL0 and TH0 act as separate
timers with FFH to 00H transitions setting the overflow flags TF0 and
TF1 respectively. In addition, the timer in TL0 is controlled by the GATE0
and C/T0 bits in TMOD.

Timer 1 is stopped in this mode and can be started by switching it into
Modes 0, 1, or 2. The only limitation is that Timer 1 cannot be clocked by
external signals, set the TF1 flag or generate an interrupt. However, the
Timer 1 overflow can still be used by the serial port to generate the baud
rate for UART0 and/or UART1.

TL0
(8 bits)

TMOD

/INT0 TR0

T0

Crossbar

0

1
 T

C
O

N

TF0
TR0

TR1
TF1

IE1
IT1
IE0
IT0

Interrupt

Interrupt

TR1 TH0
(8 bits)

T
1
M
1

T
1
M
0

C
/
T
1

G
A
T
E
1

G
A
T
E
0

C
/
T
0

T
0
M
1

T
0
M
0

CKCON
T
4
M

T
2
M

T
1
M

T
0
M

0

1

SYSCLK

 12

GATE0

Figure 8.4 Block Diagram of Timer 0 in Two 8-bit Timers Mode

8.5 Timers 2, 3 & 4 Operating Modes

16-Bit Auto-Reload Mode
This mode is used by Timers 2 and 4 under Mode 1 and is the only mode
(Mode 0) of Timer 3. Refer to Table 8.1.

 Chapter 8 Timer Operations and Programming 165

Timers 2 & 4

As mentioned before, Timer 4 is identical to Timer 2. This mode is
selected by clearing the CP/RLz bit (Refer to Figure 8.5, Table 8.7 for
T2CON and Table 8.10 for T4CON).

NOTE: z = 2 or 4

The count register reload occurs on an FFFFH to 0000H transition and
sets the TFz timer overflow flag. An interrupt will occur if enabled. On
overflow, the 16 bit value held in the two capture registers (RCAPzH and
RCAPzL) is automatically loaded into the count registers (TLz and THz)
and the timer is restarted.

Setting TRz to 1 enables and starts the timer. The timers can use either
the system clock or transitions on an external input pin (Tz) as the clock
source (counter mode), specified by the C/Tz bit. If EXENz is set to 1, a
high-to-low transition on TzEX will also cause a Timer z reload, and a
Timer z interrupt if enabled. If EXENz is 0, transitions on TzEX will be
ignored.

The appropriate crossbars have to be configured to enable the input
pins. TLz and THz must be initialized to the desired value before
enabling the timer for the first count to be correct.

TL2 TH2

TR2

T2 TCLK

RCAP2L RCAP2HReload
Interrupt

T2
C

O
N

RCLK0
TCLK0

EXF2

EXEN2
TR2
C/T2

CP/RL2

TF2

CKCON
T
4
M

T
2
M

T
1
M

T
0
M

0

1

SYSCLK

 12

0

1

EXEN2

Crossbar

T2EX

Figure 8.5 Block Diagram of Timer 2 in 16-Bit Auto-Reload Mode (Mode 1)

 166 Chapter 8 Timer Operations and Programming

Example:

; Uses Timer 4 in 16-bit Auto-Reload Mode (Mode 1)
; ---
ORL CKCON, #01000000b ; Timer 4 uses system clock
MOV RCAP4L, #33h ; Set reload time to 0x2233
MOV RCAP4H, #22h
MOV TL4, RCAP4L ; Initialize TL4 & TH4 before
MOV TH4, RCAP4H ; counting
MOV T4CON, #00000100b ; Start Timer 4 in Mode 1

Timer 3
Timer 3 is always configured as an auto-reload timer, with the reload
value held in TMR3RLL and TMR3RLH. The operation is essentially the
same as for Timers 2 and 4, except for slight differences in register
names and clock sources (refer to Figure 8.6). TMR3CN is the only SFR
required to configure Timer 3.

TMR3L TMR3H

TR3

TCLK

TMR3RLL TMR3RLHReload

Interrupt

TOE

SCL

(from SMBus)

(to ADC)

Crossbar

TM
R

3C
N

TR3
T3M

TF3

T3XCLK

1

0

T3XCLK

SYSCLK

 12

T3M

8External
Oscillator Source

1

0

Figure 8.6 Timer 3 Block Diagram

Timer 3 may be clocked by the external oscillator source (divided by 8)
or the system clock (divided by 1 or 12 according to T3M). When
T3XCLK is set to 1, Timer 3 is clocked by the external oscillator input
(divided by 8) regardless of the system clock selection. When T3XCLK is
0, the Timer 3 clock source is specified by bit T3M. Timer 3 can also be
used to start an ADC Data Conversion.
Timer 3 does not have a counter mode.

Capture Mode (Mode 0)
This mode is used by Timers 2 and 4 under Mode 0, and is selected by
setting CP/RLz (TzCON.0) and TRz (TzCON.2) to 1. Under this mode,
the timer functions as a normal 16 bit timer, setting the TFz bit upon an
FFFFH to 0000H transition of the count registers and generating an

 Chapter 8 Timer Operations and Programming 167

interrupt if the interrupt is enabled. The key difference is that a capture
function can be enabled to load the current value of the count registers
into the capture registers (Figure 8.7).

To enable the capture feature, the EXENz bit (TzCON.3) must be set to
1. If EXENz is cleared, transitions on TzEX will be ignored. When EXENz
is set, a high-to-low transition on the TzEX input pin causes the following
to occur:

1) The 16-bit value in Timer z count registers (THz, TLz) is loaded
 into the capture registers (RCAPzH, RCAPzL)

2) The Timer z External Flag (EXFz) is set to 1

3) A Timer z interrupt is generated if interrupt generation has been
enabled

TL2 TH2

Interrupt

TCLK

RCAP2L RCAP2HCapture
T2

C
O

N

RCLK0
TCLK0

EXF2

EXEN2
TR2
C/T2

CP/RL2

TF2

EXEN2

Crossbar

T2EX

TR2

T2

CKCON
T
4
M

T
2
M

T
1
M

T
0
M

0

1

SYSCLK

 12

0

1

Figure 8.7 Block Diagram of Timer 2 in 16 Bit Capture Mode (Mode 0)

The timers can use either SYSCLK, SYSCLK divided by 12, or high-to-
low transitions on the Tz input pin as the clock source when operating in
Capture mode. Clearing the C/Tz bit selects the system clock as the
input for the timer (divided by 1 or 12 as specified by TzM). When C/Tz is
set to 1, a high-to-low transition at the Tz input pin increments the
counter register.

 168 Chapter 8 Timer Operations and Programming

The appropriate crossbars have to be configured to enable the input
pins.

Baud Rate Generation (Mode 2)
This mode is used by Timers 2 and 4 under Mode 2. Timer 2 configures
UART0 while Timer 4 configures UART1 (Figure 8.8 and Figure 8.9).
The baud rate generation mode is used only when UARTx is operated in
modes 1 or 3 (refer to Chapter 10 for more information on UART
operational modes). The Baud Rate Generator mode is selected by
setting RCLKx (TzCON.5) and/or TCLKx (TzCON.4) to 1. This forces
Timer z to operate in the auto-reload mode regardless of the state of the
CP/RLz bit.

NOTE: When x = 0, z = 2 and when x = 1, z = 4

In Baud Rate Generator mode, the timers work similarly to the auto-
reload mode. On overflow, the 16 bit value held in the two capture
registers (RCAPzH, RCAPzL) is automatically loaded into the count
registers (TLz and THz). However, the TFz overflow flag is not set and
no interrupt is generated. Instead, the overflow event is used as the input
to the UARTx's shift clock. The overflows can be selected to generate
baud rates for transmit and/or receive independently.

TL2 TH2

TR2

T2

SYSCLK

 C/T2

 2

TCLK

RCAP2L RCAP2H

Reload

Crossbar

Timer 2
Overflow

PCON

0

1

EXEN2

T2EX

Interrupt

Timer 1
Overflow

T2
C

O
N

RCLK0
TCLK0

EXF2

EXEN2
TR2
C/T2

CP/RL2

TF2
Crossbar

0

1

 2

S
M
O
D
0

S
M
O
D
1

S
S
T
A
T
0

S
S
T
A
T
1

S
T
O
P

I
D
L
E

RCLK0

0

1

16 RX0 Clock

TCLK0

0

1

16 TX0 Clock

Figure 8.8 Block Diagram of Timer 2 in Baud Rate Generation Mode (Mode 2)

 Chapter 8 Timer Operations and Programming 169

In Baud Rate Generator mode, the Timer z time base is the system clock
divided by two. When selected as the UARTx baud clock source, Timer z
defines the UARTx baud rate as follows:

32]),[65536(×−
=

RCAPzLRCAPzH
SYSCLKBaudRate

If a different time base is required, setting the C/Tz bit to 1 will allow the
time base to be derived from the external input pin Tz. In this case, the
baud rate for the UART is calculated as:

16]),[65536(×−
=

RCAPzLRCAPzH
F

BaudRate CLK

where FCLK is the frequency of the signal (TCLK) supplied to Timer z and
[RCAPzH, RCAPzL] is the 16 bit value held in the capture registers.

Figure 8.9 Block Diagram of Timer 4 in Baud Rate Generation Mode (Mode 2)

 170 Chapter 8 Timer Operations and Programming

Example:

;--
; Using Timer 4 in Mode 2 to generate a baud rate of
; 2400 for UART1. System clock = 22.1184 MHz external
; oscillator
;--
ORL CKCON, #40h ; Timer 4 uses system clock
MOV RCAP4L, #0E0h ; Auto-reload value=FEE0
MOV RCAP4H, #0FEh
MOV TL4, RCAP4L ; Initialize count registers
MOV TH4, RCAP4H
MOV T4CON, #00110100b ; Set Timer 4 in mode 2 and
 ; start timer

8.6 CKCON Register
For interval timing, the count registers are incremented on each clock
tick. Clock ticks are derived from the system clock divided by either 1 or
12 as specified by the Timer Clock Select bits (T0M –T2M and T4M) in
CKCON register (Table 8.3). The twelve-clocks-per-tick option provides
compatibility with the older generation of the 8051 family. Applications
that require a faster timer should use the one-clock-per-tick option.

For Timer 3, the clock is selected using T3M bit in TMR3CN register.

Bit Symbol Description
7 - Unused. Read=000b; Write=Don’t care.

6 T4M
Timer 4 Clock Select
0: Timer 4 uses the system clock divided by 12.
1: Timer 4 uses the system clock.

5 T2M
Timer 2 Clock Select
0: Timer 2 uses the system clock divided by 12.
1: Timer 2 uses the system clock.

4 T1M
Timer 1 Clock Select
0: Timer 1 uses the system clock divided by 12.
1: Timer 1 uses the system clock.

3 T0M
Timer 0 Clock Select
0: Timer 0 uses the system clock divided by 12.
1: Timer 0 uses the system clock

2-0 Reserved Read=000b. Must Write=000b

Table 8.3 CKCON: Clock Control Register

 Chapter 8 Timer Operations and Programming 171

8.7 Timers 0 and 1 SFRs

TMOD
The TMOD register contains two groups of 2 bits each (T0M1-T0M0 and
T1M1-T1M0) that set the operating mode for Timer 0 and 1 (Table 8.4
and Table 8.5).

TMOD is not bit addressable. Generally, it is loaded once by software at
the beginning of a program to initialize the timer modes. Thereafter, the
timer can be stopped, started and so on by accessing the other timer
SFRs.

Bit Symbol Description

7 GATE1

Timer 1 Gate Control
0: Timer 1 enabled when TR1(TCON.6)=1
 irrespective of /INT logic level
1: Timer 1 enabled only when TR1=1 AND
 /INT=logic 1

6 C/T1

Counter/Timer 1 Select
0: Timer Function: Timer 1 incremented by clock
 defined by T1M bit (CKCON.4).
1: Counter Function: Timer 1 incremented by high-
 to-low transition on external input pin (T1).

5-4 T1M1-
T1M0 Timer 1 Mode Select (Table 8.5)

3 GATE0

Timer 0 Gate Control
0: Timer 0 enabled when TR0(TCON.4)=1
 irrespective of /INT logic level
1: Timer 0 enabled only when TR0=1 AND
 /INT=logic 1

2 C/T0

Counter/Timer 0 Select
0: Timer Function: Timer 0 incremented by clock
 defined by T0M bit (CKCON.3).
1: Counter Function; Timer 0 incremented by high-
 to-low transition on external input pin (T0).

1-0 T0M1-
T0M0 Timer 0 Mode Select (Table 8.5)

Table 8.4 TMOD: Timer Mode Register

 172 Chapter 8 Timer Operations and Programming

M1 M0 Mode Description
0 0 0 13 bit Counter/Timer
0 1 1 16 bit Counter/Timer

1 0 2 8 bit Counter/Timer with Auto-
reload

1 1 3 Timer 1: Inactive
Timer 0: Two 8 bit Counter/Timers

Table 8.5 Timer Modes

TCON

Bit Symbol Description

7 TF1

Timer 1 Overflow Flag
Set by hardware when Timer 1 overflows. This flag can
be cleared by software but is automatically cleared when
the CPU vectors to the Timer 1 interrupt service routine
(ISR).
0: No Timer 1 overflow detected
1: Timer 1 has overflowed

6 TR1
Timer 1 Run Control
0: Timer 1 disabled
1: Timer 1 enabled

5 TF0
Timer 0 Overflow Flag
Same as TF1 but applies to Timer 0 instead.
0: No Timer 0 overflow detected
1: Timer 0 has overflowed

4 TR0
Timer 0 Run Control
0: Timer 0 disabled
1: Timer 0 enabled

3 IE1

External Interrupt 1
This flag is set by hardware when an edge/level of type
defined by IT1 is detected. It can be cleared by software
but is automatically cleared when the CPU vectors to the
External Interrupt 1 ISR if IT1=1. This flag is the inverse of
the /INT1 input signal’s logic level when IT1=0

2 IT1
Interrupt 1 Type Select
0: /INT1 is level triggered
1: /INT1 is edge triggered

1 IE0 External Interrupt 0
Same as IE1 but applies to IT0 instead.

0 IT0
Interrupt 0 Type Select
0: /INT0 is level triggered
1: /INT0 is edge triggered

Table 8.6 TCON: Timer Control Register

 Chapter 8 Timer Operations and Programming 173

The TCON register contains status and control bits for Timer 0 and 1
(Table 8.6). The upper four bits in TCON are used to turn the timers on
and off (TR0, TR1) or to signal a timer overflow (TF0, TF1). The lower
four bits in TCON have nothing to do with the timers as such. They are
used to detect and initiate external interrupts. Please refer to Chapter 11
for more details on interrupts.

The other 4 registers associated with Timers 0 and 1 are TL0, TL1, TH0
and TH1. These enable access to the timers as two separate bytes.

8.8 Timer 2 SFRs

T2CON
The operating mode of Timer 2 is selected by setting the configuration
bits in T2CON (Table 8.7 and Table 8.8).
The RCAP2L and RCAP2H registers capture the low and high byte of
Timer 2 respectively when Timer 2 is configured in capture mode. If
Timer 2 is configured in auto-reload mode, these registers hold the low
and high byte of the reload value. TL2 and TH2 are used to access
Timer 2 as two separate bytes.

RCLK0 TCLK0 CP/RL2 TR2 Mode

0 0 1 1 16 Bit Counter/Timer with
Capture

0 0 0 1 16 Bit Counter/Timer with
Auto-reload

0 1 X 1 Baud Rate Generator for
UART0

1 0 X 1 Baud Rate Generator for
UART0

1 1 X 1 Baud Rate Generator for
UART0

X X X 0 Off

Table 8.7 Mode Configuration for Timer 2

 174 Chapter 8 Timer Operations and Programming

Bit Symbol Description

7 TF2

Timer 2 Overflow Flag
Set by hardware when Timer 2 overflows. When the Timer 2
interrupt is enabled (IE.5, see Chapter 8), setting this bit
causes the CPU vectors to the Timer 2 ISR. This bit is not
automatically cleared by hardware and must be cleared by
software. TF2 will not be set when RCLK0 and/orTCLK0 are
logic 1.

6 EXF2

Timer 2 External Flag
Set by hardware when either a capture or reload is caused by
a high-to-low transition on the T2EX input pin and EXEN2 is
logic 1. When the Timer 2 interrupt is enabled, setting this bit
causes the CPU to vector to the Timer 2 ISR. This bit is not
automatically cleared by hardware and must be cleared by
software.

5 RCLK0
Receive Clock Flag for UART0
0: Timer 1 overflows used for receive clock
1: Timer 2 overflows used for receive clock

4 TCLK0
Transmit Clock Flag for UART0
0: Timer 1 overflows used for transmit clock
1: Timer 2 overflows used for transmit clock

3 EXEN2

Timer 2 External Enable
Enables high-to-low transitions on T2EX to trigger captures
or reloads when Timer 2 is not operating in Baud Rate
Generator mode.
0: High-to-low transitions on T2EX ignored.
1: High-to-low transitions on T2EX cause a capture or reload.

2 TR2 Timer 2 Run Control
0: Timer 2 disabled 1: Timer 2 enabled

1 C/T2

Counter/Timer Select
0: Timer Function: Timer 2 incremented by clock defined by
 T2M bit (CKCON.5).
1: Counter Function: Timer 2 incremented by high-to-low
 transition on external input pin (T2).

0 CP/RL2

Capture/Reload Select
EXEN2 must be logic 1 for high-to-low transitions on T2EX to
be recognized and used to trigger captures or reloads. If
RCLK0 or TCLK0 is set, this bit is ignored and Timer 2 will
function in auto-reload mode.
0: Auto-reload on Timer 2 overflow or high-to-low transition at
 T2EX (EXEN2=1)
1: Capture on high-to-low transition at T2EX (EXEN2=1)

Table 8.8 T2CON: Timer 2 Control Register

 Chapter 8 Timer Operations and Programming 175

8.9 Timer 3 SFRs

TMR3CN
Timer 3 is always configured as an auto-reload timer, with the 16-bit
reload value held in the TMR3RLL (low byte) and TMR3RLH (high byte)
registers.

TMR3L and TMR3H are the low and high bytes of Timer 3. TMR3CN is
used to select the clock source and is the only SFR used to configure
Timer 3 (Table 8.9).

Bit Symbol Description

7 TF3

Timer 3 Overflow Flag
Set by hardware when Timer 3 overflows from
FFFFH to 0000H. When the Timer 3 interrupt is
enabled (EIE2.0, see Chapter 8), setting this bit
causes the CPU vectors to the Timer 3 ISR. This bit
is not automatically cleared by hardware and must
be cleared by software.

6-3 UNUSED Read=0000b, Write=don’t care

2 TR3
Timer 3 Run Control
0: Timer 3 disabled
1: Timer 3 enabled

1 T3M
Timer 3 Clock Select
0: Counter/Timer 3 uses the system clock divided
by 12.
1: Counter/Timer 3 uses the system clock.

0 T3XCLK

Timer 3 External Clock Select
0: Timer 3 clock source defined by bit T3M
 (TMR3CN.1)
1: Timer 3 clock source is the external oscillator
 input divided by 8. T3M is ignored.

Table 8.9 TMR3CN: Timer 3 Control Register

 176 Chapter 8 Timer Operations and Programming

8.10 Timer 4 SFRs

T4CON
The operating mode of Timer 4 is selected by setting the configuration
bits in T4CON (Table 8.10 and Table 8.11). The T4CON functions are
identical to T2CON.

The RCAP4L and RCAP4H registers capture the low and high byte of
Timer 4 respectively when Timer 4 is configured in capture mode. If
Timer 4 is configured in auto-reload mode, the registers hold the low and
high byte of the reload value. TL4 and TH4 are used to access Timer 4
as two separate bytes.

RCLK1 TCLK1 CP/RL4 TR4 Mode

0 0 1 1 16 Bit Counter/Timer with
Capture

0 0 0 1 16 Bit Counter/Timer with
Auto-reload

0 1 X 1 Baud Rate Generator for
UART1

1 0 X 1 Baud Rate Generator for
UART1

1 1 X 1 Baud Rate Generator for
UART1

X X X 0 Off

Table 8.10 Mode Configuration for Timer 4

 Chapter 8 Timer Operations and Programming 177

Bit Symbol Description

7 TF4

Timer 4 Overflow Flag
Set by hardware when Timer 4 overflows. When the Timer
4 interrupt is enabled (EIE2.2, see Chapter 8), setting this
bit causes the CPU vectors to the Timer 4 ISR. This bit is
not automatically cleared by hardware and must be cleared
by software. TF4 will not be set when RCLK1 and/orTCLK1
are logic 1.

6 EXF4

Timer 4 External Flag
Set by hardware when either a capture or reload is caused
by a high-to-low transition on the T4EX input pin and
EXEN4 is logic 1. When the Timer 4 interrupt is enabled,
setting this bit causes the CPU to vector to the Timer 4 ISR.
This bit is not automatically cleared by hardware and must
be cleared by software.

5 RCLK1
Receive Clock Flag for UART1
0: Timer 1 overflows used for receive clock
1: Timer 4 overflows used for receive clock

4 TCLK1
Transmit Clock Flag for UART1
0: Timer 1 overflows used for transmit clock
1: Timer 4 overflows used for transmit clock

3 EXEN4

Timer 4 External Enable
Enables high-to-low transitions on T4EX to trigger captures
or reloads when Timer 4 is not operating in Baud Rate
Generator mode.
0: High-to-low transitions on T4EX ignored.
1: High-to-low transitions on T4EX cause a capture or
 reload.

2 TR4
Timer 4 Run Control
0: Timer 4 disabled
1: Timer 4 enabled

1 C/T4

Counter/Timer Select
0: Timer Function: Timer 4 incremented by clock defined by
 T4M bit (CKCON.6).
1: Counter Function: Timer 4 incremented by high-to-low
 transition on external input pin (T4).

0 CP/RL4

Capture/Reload Select
EXEN4 must be logic 1 for high-to-low transitions on T4EX
to be recognized and used to trigger captures or reloads. If
RCLK1 or TCLK1 is set, this bit is ignored and Timer 4 will
function in auto-reload mode.
0: Auto-reload on Timer 4 overflow or high-to-low transition
 at T4EX (EXEN4=1)
1: Capture on high-to-low transition at T4EX (EXEN4=1)

Table 8.11 T4CON: Timer 4 Control Register

 178 Chapter 8 Timer Operations and Programming

8.11 Timer 2 - C Programming Example
In the following code segments, we have shown how to configure the
Timer 2 in Mode 1 (16-bit auto-reload) to generate an interrupt at regular
interval. The code would be very similar if we were to use Timer 4.

//-- This program checks the status of switch at P3.7 and if
// it is pressed the LED at P1.6 starts blinking
// Uses Timer 2 and interrupts (LED4.C)

#include <c8051f020.h>

//--- 16-bit SFR Definitions for F020 --------------------------
sfr16 T2 = 0xcc; // Timer2
sfr16 RCAP2 = 0xca; // Timer2 capture/reload

#define SYSCLK 2000000 //-- Uses internal oscillator 2MHz
sbit LED = P1^6;

//-- Function Prototypes ---------------------------------------
void Init_Port(void);
void Init_Timer2(unsigned int counts);
void Timer2_ISR(void);

void main(void)
{
 unsigned char blink_speed = 10;

 EA = 0; //-- disable global interrupts

 WDTCN = 0xDE; //-- disable watchdog timer
 WDTCN = 0xAD;

 Init_Port();
 LED = 0;
 Init_Timer2(SYSCLK/12/blink_speed);
 //-- Initialize Timer3 to generate interrupts

 EA = 1; //-- enable global interrupts

 while(1) //-- go on forever
 {
 }

}

In the main() function, the Watchdog timer is disabled, the Crossbar and
I/O ports are configured and the Timer 2 is initialized. The endless while
loop makes the program go on forever.

 Chapter 8 Timer Operations and Programming 179

//-- Configures the Crossbar and GPIO ports
void Init_Port(void)
{
// XBR1 = 0x00;
 XBR2 = 0x40; //-- Enable Crossbar and weak pull-ups

// (globally)

 //-- Enable P1.6 (LED) as push-pull output
 P1MDOUT |= 0x40;
}

The crossbar configuration code is shown above in the Init_Port
function.

//-- Configure Timer2 to auto-reload and generate
// an interrupt at interval specified by <counts>
// using SYSCLK/12 as its time base.

void Init_Timer2 (unsigned int counts)
{
 CKCON = 0x00; // Define clock (T2M). Timer 2

// uses system clock DIV BY 12
 // CKCON |= 0x20; // if you want to use system clock

 T2CON = 0x00;

// T2CON.1 = 0 --> T2 set for Timer function
// (C/T2) i.e. incremented by clock defined by T2M
// T2CON.0 = 0 --> Allow Auto-reload on Timer2
// overflow (CP/RL2)
// T2CON.3 = 0 --> High-to-Low transitions on
// T2EX ignored (EXEN2)

 // T2CON.2 = 0 --> Disable Timer2

 RCAP2 = -counts; // Init reload values in the
 // Capture registers
 T2 = 0xFFFF; // count register set to reload
 // immediately when the first
 // clock occurs
 IE |= 0x20; // IE.5, Enable Timer 2
 // interrupts (ET2)
 T2CON |= 0x04; // start Timer2 by setting TR2
 // (T2CON.2) to 1
}

The above code segment initializes the Timer 2 in the desired mode of
operation.

 180 Chapter 8 Timer Operations and Programming

//-- Interrupt Service Routine
// This routine changes the state of the LED
// whenever Timer2 overflows.

void Timer2_ISR (void) interrupt 5
{
 unsigned char P3_input;

 T2CON &= ~(0x80);

// clear TF2. This is not automatically
// cleared, must be done by software upon
// overflow.

 P3_input = ~P3;
 if (P3_input & 0x80) // if bit 7 is set,then the switch

// is pressed
 LED = ~LED; // change state of LED
}

The above code segment will be executed each time the Timer 2
overflows.

The definition of LED is given below. The LED is connected to pin 6 of
Port 0.

sbit LED = P1^6;

 Chapter 8 Timer Operations and Programming 181

8.12 Tutorial Question

1. Which are the five SFRs that should be configured when
programming Timer 1? (Hint: See Table 8.2 or Section 8.2)

2. Which are the six SFRs that should be configured when
programming Timer 2? (Hint: See Figure 8.5 or Section 8.5)

3. What are the modes of operation for Timers 0 and 1?

4. What are the modes of operation for Timers 2 and 4?

5. How many operation modes does Timer 3 have?

6. Using the 22.1184MHz external oscillator as the system clock,
show the appropriate values used to setup the SFRs for
programming Timer 2 with an auto-reload value of FF77H. (i.e.,
Timer 2 in Auto-Reload Mode).

7. Using the 22.1184MHz external oscillator as the system clock,
show the appropriate values used to setup the SFRs for
programming Timer 2 to generate a baud rate of 57600 for
UART0.

8. An application software requires an accurate 0.25 second delay
function to flash an LED. Show how you would program the
C8051F020 to generate such a delay using interrupts.

9

ADC and DAC

9.0 Introduction 185
9.1 12-Bit ADC (ADC0) 186

Analog Multiplexer 0 (AMUX0) and PGA0, Starting ADC0
Conversions

9.2 Data Word Conversion Map (12-bit) 188
9.3 Programming ADC0 189
9.4 ADC0 SFRs 195

AMX0SL: AMUX0 Channel Selection Register, AMX0CF:
AMUX0 Configuration Register, ADC0CF: ADC0
Configuration Register, ADC0CN: ADC0 Control Register

9.5 8-bit ADC (ADC1) 199
Analog Multiplexer 1 (AMUX1) and PGA1, Starting ADC1
Conversions

9.6 Data Word Conversion Map (8-bit) 201
9.7 Programming ADC1 201
9.8 ADC1 SFRs 206

AMX1SL: AMUX1 Channel Selection Register, ADC1CF:
ADC1 Configuration Register, ADC1CN: ADC1 Control
Register

9.9 12-bit DACs (DAC0 and DAC 1) 208
Output Scheduling, Output Scaling

9.10 Programming the DACs 210
9.11 DAC0 SFRs 212

 184 Chapter 9 ADC and DAC

9.12 DAC1 SFRs 213
9.13 Tutorial Questions 214

 Chapter 9 ADC and DAC 185

9.0 Introduction
A fully integrated control system with both analog and digital capabilities
is the emerging trend in the technological industry. There is currently a
demand for sophisticated control systems with high-speed precision
digital and analog performance. Signals in the real world are analog and
have to be digitized for processing.

This chapter will introduce the analog and digital peripherals of the
C8051F020. The chip contains one 8 bit and one 12 bit analog-to-digital
converters (ADCs) and two 12 bit digital-to-analog converters (DACs).
The C8051F020 also contains programmable gain amplifiers (PGAs),
analog multiplexer (8 channel and 9 channel), two comparators, a
precision voltage reference, and a temperature sensor to support analog
applications. These are shown in Figure 9.1. The following sections will
discuss the operation of these peripherals, as well as the SFRs used to
configure them. A voltage reference has to be used when operating the
ADC and DAC. Please refer to Section 2.8 for more details on setting the
Voltage Reference.

P0, P1,
P2, P3
Latches

JTAG
Logic

TCK
TMS
TDI
TDO

UART1

SMBus

SPI Bus

PCA

64kbyte
FLASH

256 byte
RAM

VDD
Monitor

SFR Bus

8
0
5
1

C
o
r
e

Timers 0,
1, 2, 4

Timer 3/
RTC

P0
 Drv

C
R
O
S
S
B
A
R

Port I/O
Config.

Crossbar
Config.

AV+
AV+

VDD
VDD
VDD
DGND
DGND
DGND

AGND
AGND

Reset/RST

XTAL1
XTAL2

External
Oscillator

Circuit System
 Clock

Internal
Oscillator

Digital Power

Analog Power

Debug HW

Boundary Scan

4kbyte
RAM

P2.0

P2.7

P1.0/AIN1.0

P1.7/AIN1.7

P0.0

P0.7

P1
 Drv

P2
 Drv

Data Bus

Address Bus

Bus Control
DAC1

DAC1
(12-Bit)

VREF

DAC0
(12-Bit)

ADC
100ksps
(12-Bit)

A
M
U
X

AIN0.0
AIN0.1
AIN0.2
AIN0.3
AIN0.4
AIN0.5
AIN0.6
AIN0.7

DAC0

CP0+

CP0-

CP1+

CP1-

VREF

TEMP
SENSOR

UART0

P3.0

P3.7

P3
 Drv

8:1

MONEN WDT

VREFD

VREF0

Prog
Gain

CP0

CP1

C
T
L

P4 Latch

D
a
t
a

P7 Latch

A
d
d
r

P5 Latch

P6 Latch

P7.0/D0

P7.7/D7

P7
DRV

P5.0/A8

P5.7/A15

P5
DRV

P6.0/A0

P6.7/A7

P6
DRV

P4
DRV P4.5/ALE

P4.6/RD
P4.7/WR

P4.0

P4.4

External Data Memory Bus

Prog
Gain

ADC
500ksps
(8-Bit)

A
M
U
X

VREF1

Figure 9.1 Block Diagram of C8051F020

 186 Chapter 9 ADC and DAC

9.1 12-Bit ADC (ADC0)
The ADC0 subsystem, shown in Figure 9.2, consists of a 9-channel,
configurable analog multiplexer (AMUX0), a programmable gain amplifier
(PGA0) and a 12-bit Successive Approximation Register (SAR) ADC.

 12-Bit
 SAR

 ADC

R
E

F

+
-

AV+

TEMP
SENSOR

12

+

-

+

-

+

-

9-to-1
AMUX
(SE or
DIFF)

AV+

24

12

AD0EN

S
Y

S
C

LK

+

-

X

AIN0

AIN1

AIN2

AIN3

AIN4

AIN5

AIN6

AIN7

Start Conversion
AGND

AGND

AD
C

0L
AD

C
0H

ADC0LTLADC0LTHADC0GTLADC0GTH

A
D

0C
M

Timer 3 Overflow

Timer 2 Overflow

00

01

10

11

AD0BUSY (W)

CNVSTR

AD0WINTComb.
Logic

AMX0CF AMX0SL

AM
X0

AD
0

AM
X0

AD
1

AM
X0

AD
2

AM
X0

AD
3

A
IN

01
IC

A
IN

23
IC

A
IN

45
IC

A
IN

67
IC

ADC0CF

A
M

P0
G

N
0

A
M

P0
G

N
1

A
M

P0
G

N
2

A
D

0S
C

0
A

D
0S

C
1

A
D

0S
C

2
A

D
0S

C
3

A
D

0S
C

4

ADC0CN

A
D

0L
JS

T
A

D
0W

IN
T

A
D

0C
M

0
A

D
0C

M
1

AD
0B

U
SY

A
D

0I
N

T
A

D
0T

M
A

D
0E

N

AD
0C

M

Figure 9.2 Functional Block Diagram of ADC0

ADC0 is enabled by setting AD0EN (ADC0CN.7) to 1. If this bit is 0, the
ADC0 subsystem is in low power shutdown. AMUX0, PGA0 and the ADC
data conversion modes are all configurable via SFRs.

Analog Multiplexer 0 (AMUX0) and PGA0
Eight of the AMUX0 channels are available for external measurements
and the ninth channel is internally connected to an on-chip temperature
sensor. Each of the multiplexer input pairs can be programmed to
operate in either differential or single-ended mode. AMUX0 defaults to all
single-ended inputs upon reset.
The two SFRs associated with AMUX0 are the Channel Selection
register AMX0SL (Table 9.1) and the Configuration register AMX0CF
(Table 9.3) presented in subsequent sections.

PGA0 amplifies the AMUX0 output signal by an amount determined by
the ADC0 Configuration register, ADC0CF (Table 9.4). PGA0 can be

 Chapter 9 ADC and DAC 187

programmed for gains of 0.5, 1, 2, 4, 8 or 16. The gain defaults to 1 on
reset.

Starting ADC0 Conversions
Conversions can be started in four different ways, depending on the
AD0CM1 and AD0CM0 bits in ADC0CN (Table 9.5). These are:

1) Software command (Writing 1 to AD0BUSY)

2) Overflow of Timer 2

3) Overflow of Timer 3

4) External signal input (rising edge of CNVSTR).

The AD0BUSY bit remains set to 1 during conversion and restored to 0
when the conversion is complete. The falling edge of AD0BUSY triggers
an interrupt (when enabled) and sets the AD0INT interrupt flag.
Converted data is stored in the ADC0H and ADC0L registers and can be
either left or right justified in the register pair depending on the
programmed state of the AD0LJST (ADC0CN.0) bit.

ADC0H[3:0]:ADC0L[7:0], if AD0LJST = 0
(ADC0H[7:4] will be the sign-extension of ADC0H.3 for a differential
reading, otherwise = 0000b).

ADC0H[7:0]:ADC0L[7:4], if AD0LJST = 1
(ADC0L[3:0] = 0000b).

Example:

If the ADC0 output data word = FFFH (111111111111b) & AD0LJST = 0:
 ADC0H:ADC0L = 0FFFH (0000111111111111)

If AD0LJST = 1:

 ADC0H:ADC0L = FFF0H (1111111111110000b)

 188 Chapter 9 ADC and DAC

9.2 Data Word Conversion Map (12-bit)
This section shows the mapping of the ADC0 analog inputs to the ADC0
data word registers. For AD0LJST = 0:

0 2Gain nADC Code Vin VREF= × ×

where n= 12 for single-ended and n = 11 for differential inputs.

Example:

AIN0 is used as the input in single-ended mode (AMX0CF=00H and
AMXSL=00H). Gain is set to 1.

AIN0 – AGND
(Volts)

ADC0H:ADC0L
(AD0LJST=0)

ADC0H:ADC0L
(AD0LJST=1)

4096
4095

×VREF 0FFFH FFF0H

2
VREF

 0800H 8000H

4096
2047

×VREF 07FFH 7FF0H

0 0000H 0000H

Example:

AIN0 and AIN1 are used as the inputs in differential mode
(AMX0CF=01H and AMXSL=00H). Gain is set to 1.

 Chapter 9 ADC and DAC 189

AIN0 – AGND

(Volts)
ADC0H:ADC0L
(AD0LJST=0)

ADC0H:ADC0L
(AD0LJST=1)

2048
2047

×VREF 07FFH 7FF0H

2
VREF

 0400H 4000H

2048
1

×VREF 0001H 0010H

0 0000H 0000H

2048
1

×−VREF FFFFH (-1d) FFF0H

2
VREF

− FC00H (-1024d) C000H

VREF− F800H (-2048d) 8000H

9.3 Programming ADC0
ADC0 can be programmed through the following sequence:

1) Configure the voltage reference (REF0CN)

2) Set the SAR0 conversion clock frequency and PGA0 gain
(ADC0CF)

3) Configure the multiplexer input channels (AMX0CF)

4) Select the desired multiplexer input channel (AMX0SL)

5) Set the appropriate control bits and start of conversion mode
 and turn on ADC0 (ADC0CN)

The next multiplexer input channel (Step 3) can be selected in the ADC0
ISR after the current channel has been converted and the AD0INT bit
cleared. The newly selected channel will then be converted in the next
conversion cycle. When initiating conversions by setting AD0BUSY to 1,
the AD0INT bit (ADC0CN.5) may be polled to determine when a
conversion has completed. The recommended polling procedure is:

 190 Chapter 9 ADC and DAC

 1. Clear AD0INT to 0
 2. Set AD0BUSY to 1
 3. Poll AD0INT for 1
 4. Process ADC0 data

Example:

;--
; Vref setup:
; Enable internal bias generator and internal
; reference buffer, and select ADC0 reference from
; VREF0 pin.
;--

 MOV REF0CN, #00000011b

;--
; System clock = 16 MHz internal oscillator.
;--

 MOV OSCIN, #10000111b ;Enable 16 MHz Int Osc
IFRDY_wait: ;poll for IFRDY 1
 MOV A, OSCIN
 JNB ACC.4, IFRDY_wait

;--
; Configure ADC0 to use AIN0 as single-ended input
; only. Other inputs are not used.
;--

MOV ADC0CF, #10000000b; SAR0 Conversion
 ; clock=941 kHz approx,
 ; Gain=1

 MOV AMX0CF, #00H ; 8 single-ended inputs
 MOV AMX0SL, #00H ; Select AIN0 input
 MOV ADC0CN, #10001101b; Enable ADC0,

; Continuous Tracking
; Mode, conversion
; initiated on

 ; Timer 2 overflow and
 ; left justify data

 Chapter 9 ADC and DAC 191

Example: Measure Temperature using on-chip sensor (9th input of ADC0)

//-- Uses Timer 3 and interrupts
//-- Uses the External Crystal oscillator at 22.1184MHz
//-- Measures the on-chip temperature sensor using ADC0
//-- ADC0_Temp.C

#include <c8051f020.h>

//--
// 16-bit SFR Definitions for C8051F020
//--
sfr16 TMR3RL = 0x92; // Timer3 reload value
sfr16 TMR3 = 0x94; // Timer3 counter
sfr16 ADC0 = 0xbe; // ADC0 data
//--
// Global CONSTANTS
//--
#define SYSCLK 22118400 //-- External Crystal Oscillator @22MHz

sbit LED = P1^6;
unsigned int ADC0_reading; //-- variable to store ADC0 value

//-- function prototypes ---------------------------------------
void Init_Clock(void); //-- initialize the clock to use external

// crystal oscillator
void Init_Port(void); //-- Configures the Crossbar & GPIO ports
void Init_ADC0(void); //-- Initialize the ADC1
void Init_Timer3(unsigned int counts);
void Timer3_ISR(void); //-- ISR for Timer 3
//--

void main(void)
{
 EA = 0; //-- disable global interrupts

//-- It is a good idea to disable interrupts
 // before all the initialization

 // is complete
 WDTCN = 0xDE; //-- disable watchdog timer
 WDTCN = 0xAD;

 Init_Clock();
 Init_Port();
 Init_ADC0();
 LED = 0; //-- turn off the LED

 //-- Initialise Timer3 to generate interrupts
 Init_Timer3(SYSCLK/12/10);

 EA = 1; //-- enable global interrupts

 while(1) //-- go on forever
 {
 }
}

 192 Chapter 9 ADC and DAC

//--
void Init_Clock(void)
{
 OSCXCN = 0x67; //-- 0110 0111b

//-- External Osc Freq Control Bits (XFCN2-0) set to 111
// because crystal frequency > 6.7 MHz

 // Crystal Oscillator Mode (XOSCMD2-0) set to 110

 //-- wait till XTLVLD pin is set
 while (!(OSCXCN & 0x80));

 OSCICN = 0x88; //-- 1000 1000b
 //-- Bit 2 : Internal Osc. disabled (IOSCEN = 0)

//-- Bit 3 : Uses External Oscillator as System Clock
// (CLKSL = 1)

 //-- Bit 7 : Missing Clock Detector Enabled (MSCLKE = 1)
}

//--
void Init_Port(void) //-- Configures the Crossbar and GPIO ports
{
 XBR1 = 0x00;
 XBR2 = 0x40; //-- Enable Crossbar and weak pull-ups

// (globally)
 P1MDOUT |= 0x40; //-- Enable P1.6 (LED) as push-

// pull output
}

//--
//-- Configure Timer3 to auto-reload and generate an interrupt
// at interval specified by <counts> using SYSCLK/12 as its
// time base.
void Init_Timer3 (unsigned int counts)
{
 TMR3CN = 0x00; //-- Stop Timer3; Clear TF3;
 //-- use SYSCLK/12 as timebase

 TMR3RL = -counts; //-- Init reload values
 TMR3 = 0xffff; //-- set to reload immediately
 EIE2 |= 0x01; //-- enable Timer3 interrupts
 TMR3CN |= 0x04; //-- start Timer3 by setting TR3

 // (TMR3CN.2) to 1
}

 Chapter 9 ADC and DAC 193

//--
void Init_ADC0(void)
{
 REF0CN = 0x07; //--Enable internal bias generator and

 // internal reference buffer
 // Select ADC0 reference from VREF0 pin
 // Internal Temperature Sensor ON
 ADC0CF = 0x81; //--SAR0 conversion clock=1.3MHz

 // approx., Gain=2

 AMX0SL = 0x08; //-- Select Temp Sensor
 ADC0CN = 0x84; //-- enable ADC0, Continuous Tracking

// Mode Conversion initiated on Timer 3
// overflow, ADC0 data is right
// justified

}

//--
//-- Interrupt Service Routine

void Timer3_ISR (void) interrupt 14
{
 TMR3CN &= ~(0x80); //-- clear TF3 flag

 //-- wait for ADC0 conversion to be over
 while ((ADC0CN & 0x20) == 0); //-- poll for AD0INT-->1
 ADC0_reading = ADC0; //-- read ADC0 data
 ADC0CN &= 0xDF; //-- clear AD0INT
}

The Timer 3 overflow is used to initiate ADC0 conversion. Timer 3
Interrupt (EIE2.0) is also enabled; hence the Timer 3 ISR is executed as
soon as the ADC conversion starts. Within the Timer 3 ISR, we first reset
the TF3 (Timer 3 overflow flag) and then poll the AD0INT flag, waiting for
it to set to 1. The AD0INT flag is set when the ADC conversion is
complete. We then read the ADC conversion value from the register
ADC0 and load it into the variable ADC0_reading. To see the value
stored in ADC0_reading, go to the code edit window in the Silicon Labs
IDE and right-click on the variable name and add it to the Watch window.
When you stop the program, the variable in the Watch window will be
updated and you will be able to see its latest value. Instead of using the
polling technique as illustrated in the above code, we could also use the
ADC0 interrupt which can be enabled by setting EADC0 (EIE2.1). The
ISR for ADC0 will be called each time the conversion is completed.
Inside the ISR we simply need to read the ADC0 register and store the
value in a variable and thereafter clear the AD0INT flag.

 194 Chapter 9 ADC and DAC

Example: Analog measurement using Interrupts

The ADC initialization code and the corresponding ISR are shown below:

//-- ADC0_Temp_ISR.C
//--

void Init_ADC0(void)
{
 REF0CN = 0x07; //-- Enable internal bias generator and

// internal reference buffer
 // Select ADC0 reference from VREF0 pin
 // Internal Temperature Sensor ON

 ADC0CF = 0x81; //-- SAR0 conversion clock=1.3MHz

// approx., Gain=2

 AMX0SL = 0x08; //-- Select Temp Sensor
 ADC0CN = 0x84; //-- enable ADC0, Continuous Tracking

// Mode, Conversion initiated on Timer
// 3 overflow, ADC0 data is right
// justified

 EIE2 |= 0x02; //-- enable ADC Interrupts
}

//--
void ADC0_ISR(void) interrupt 15
{
 AD0INT = 0; //-- clear ADC0 conversion complete

// interrupt flag
 ADC0_reading = ADC0;
}

 Chapter 9 ADC and DAC 195

9.4 ADC0 SFRs

AMX0SL: AMUX0 Channel Selection Register

Bit Symbol Description
7-4 - UNUSED. Read=0000, Write=don’t care

3-0 AMX0AD3-0
AMX0 Address Bits
0000-1111: ADC Inputs selected according to
Table 9.2.

Table 9.1 AMX0SL: AMUX0 Channel Selection Register

 Register AMUX0SL Bits 3-0 (AMX0AD3-0)
 0000 0001 0010 0011 0100 0101 0110 0111 1xxx

0000 AIN0 AIN1 AIN2 AIN3 AIN4 AIN5 AIN6 AIN7 Temp
Sensor

0001 +(AIN0)
-(AIN1) AIN2 AIN3 AIN4 AIN5 AIN6 AIN7 Temp

Sensor

0010 AIN0 AIN1 +(AIN2)
-(AIN3) AIN4 AIN5 AIN6 AIN7 Temp

Sensor

0011 +(AIN0)
-(AIN1) +(AIN2)

-(AIN3) AIN4 AIN5 AIN6 AIN7 Temp
Sensor

0100 AIN0 AIN1 AIN2 AIN3 +(AIN4)
-(AIN5) AIN6 AIN7 Temp

Sensor

0101 +(AIN0)
-(AIN1) AIN2 AIN3 +(AIN4)

-(AIN5) AIN6 AIN7 Temp
Sensor

0110 AIN0 AIN1 +(AIN2)
-(AIN3) +(AIN4)

-(AIN5) AIN6 AIN7 Temp
Sensor

0111 +(AIN0)
-(AIN1) +(AIN2)

-(AIN3) +(AIN4)
-(AIN5) AIN6 AIN7 Temp

Sensor

1000 AIN0 AIN1 AIN2 AIN3 AIN4 AIN5 +(AIN6)
-(AIN7) Temp

Sensor

1001 +(AIN0)
-(AIN1) AIN2 AIN3 AIN4 AIN5 +(AIN6)

-(AIN7) Temp
Sensor

1010 AIN0 AIN1 +(AIN2)
-(AIN3) AIN4 AIN5 +(AIN6)

-(AIN7) Temp
Sensor

1011 +(AIN0)
-(AIN1) +(AIN2)

-(AIN3) AIN4 AIN5 +(AIN6)
-(AIN7) Temp

Sensor

1100 AIN0 AIN1 AIN2 AIN3 +(AIN4)
-(AIN5) +(AIN6)

-(AIN7) Temp
Sensor

1101 +(AIN0)
-(AIN1) AIN2 AIN3 +(AIN4)

-(AIN5) +(AIN6)
-(AIN7) Temp

Sensor

1110 AIN0 AIN1 +(AIN2)
-(AIN3) +(AIN4)

-(AIN5) +(AIN6)
-(AIN7) Temp

Sensor

R
eg

is
te

r A
M

X0
C

F
B

its
 3

-0

1111 +(AIN0)
-(AIN1) +(AIN2)

-(AIN3) +(AIN4)
-(AIN5) +(AIN6)

-(AIN7) Temp
Sensor

Table 9.2 AMUX0 Channel Selection

 196 Chapter 9 ADC and DAC

AMX0CF: AMUX0 Configuration Register

Bit Symbol Description
7-4 - UNUSED. Read=0000, Write=don’t care

3 AIN67IC

AIN6, AIN7 Input Pair Configuration Bit
0: AIN6 and AIN7 are independent single-ended
 inputs
1: AIN6, AIN7 are (respectively) +,- differential input
 pair

2 AIN45IC

AIN4, AIN5 Input Pair Configuration Bit
0: AIN4 and AIN5 are independent single-ended
 inputs
1: AIN4, AIN5 are (respectively) +,- differential input
 pair

1 AIN23IC

AIN2, AIN3 Input Pair Configuration Bit
0: AIN2 and AIN3 are independent single-ended
 inputs
1: AIN2, AIN3 are (respectively) +,- differential input
 pair

0 AIN01IC

AIN0, AIN1 Input Pair Configuration Bit
0: AIN0 and AIN1 are independent single-ended
 inputs
1: AIN0, AIN1 are (respectively) +,- differential input
 pair

Table 9.3 AMX0CF: AMUX0 Configuration Register

The ADC0 Data Word is in 2’s complement format for channels
configured as differential input.

 Chapter 9 ADC and DAC 197

ADC0CF: ADC0 Configuration Register

Bit Symbol Description

7-3 AD0SC4-0

ADC0 SAR0 Conversion Clock frequency Bits
SAR0 Conversion clock is derived from system
clock by the following equation, where AD0SC
refers to the 5 bit value in AD0SC4-0 and CLKSAR0
refers to the desired ADC0 SAR0 conversion
clock frequency.

0
0 1

SAR

SYSCLKAD SC
CLK

= −

2-0 AMP0GN2-0

ADC0 Internal Amplifier Gain (PGA)
000: Gain = 1
001: Gain = 2
010: Gain = 4
011: Gain = 8
10x: Gain = 16
11x: Gain = 0.5

Table 9.4 ADC0CF: ADC0 Configuration Register

The conversion clock has a maximum frequency of 2.5MHz.

0 0 1SAR
SYSCLKCLK

AD SC
=

+

If the System Clock Frequency is 16 MHz and AD0SC4-0 is set to
10000b, then the SAR0 conversion frequency is 16MHz/17 = 941.176
KHz. Hence if the value loaded in ADC0CF is 10000000, then the SAR0
conversion frequency will be 941 KHz approximately and the PGA0 gain
will be set to 1.

 198 Chapter 9 ADC and DAC

ADC0CN: ADC0 Control Register

Bit Symbol Description

7 AD0EN
ADC0 Enable Bit
0: ADC0 Disabled.
1: ADC0 Enabled. ADC0 is active and ready for data
 conversions.

6 AD0TM

ADC0 Track Mode Bit
0: Continuous tracking unless a conversion is in process.
 ADC has to be enabled.
1: Tracks when CNVSTR is low, converts on rising edge of
 CNVSTR.

5 AD0INT

ADC0 Conversion Complete Interrupt Flag
NOTE: This flag must be cleared by software
0: ADC0 has not completed a data conversion since the
 last time this flag was cleared
1: ADC0 has completed a data conversion

4 AD0BUSY

ADC0 Busy Bit
0: ADC0 Conversion is complete or a conversion is not
 currently in progress. AD0INT is set on the falling edge
 of AD0BUSY.
1: ADC0 Conversion is in progress.

3-2 AD0CM1-0

ADC0 Start of Conversion Mode Select
If AD0TM=0:
00: ADC0 conversion initiated on every write of ‘1’ to
 AD0BUSY
01: ADC0 conversion initiated on overflow of Timer 3
10: ADC0 conversion initiated on rising edge of external
 CNVSTR
11: ADC0 conversion initiated on overflow of Timer 2

If AD0TM=1:
00: Tracking starts with the write of ‘1’ to AD0BUSY and
 lasts for 3 SAR clocks, followed by conversion.
01: Tracking started by overflow of Timer 3 and last for 3
 SAR clocks, followed by conversion.
10: ADC0 tracks only when CNVSTR input is 0, conversion
 starts on rising CNVSTR edge.
11: Tracking started by overflow of Timer 2 and last for 3
 SAR clocks, followed by conversion.

1 AD0WINT ADC0 Window Compare Interrupt Flag
NOTE: This bit must be cleared by software.

0 AD0LJST
ADC0 Left Justify Select
0: Data in ADC0H:ADC0L registers are right justified.
1: Data in ADC0H:ADC0L registers are left justified.

Table 9.5 ADC0CN: ADC0 Control Register (Bit Addressable)

 Chapter 9 ADC and DAC 199

The ADC0H and ADC0L registers are used to store the MSB and LSB of
the ADC0 data word respectively.

The ADC0GTH, ADC0GTL, ADC0LTH and ADC0LTL registers are the
ADC0 Greater-Than and Less-Than registers respectively. These
registers are used in the ADC0 Programmable Window Detector mode to
store the 16 bit limits for the ADC0 output. The Programmable Window
Detector mode is used to save code space and CPU bandwidth to
deliver faster system response times. An interrupt is generated when an
out-of-bound condition is detected.

9.5 8-Bit ADC (ADC1)
The ADC1 subsystem consists of an 8-channel, configurable analog
multiplexer (AMUX1), a programmable gain amplifier (PGA1) and an 8
bit SAR ADC as shown in Figure 9.3. Its operation is essentially similar
to the ADC0 subsystem, but with minor differences, e.g. ADC1 does not
support the Programmable Window Detector mode and has 5 Start of
Conversion modes instead of 4.

ADC1 is enabled by setting AD1EN (ADC1CN.7) to 1. If this bit is 0, the
ADC1 subsystem is in low power shutdown. AMUX1, PGA1 and the ADC
data conversion modes are all configurable via SFRs.

8-Bit
SAR

ADC

R
E

F

+
-

AV+

8

AV+

AD1EN S
Y

S
C

LK

X
AGND

AD
C

1

ADC1CF

AM
P

1G
N

0
AM

P
1G

N
1

AD
1S

C
0

AD
1S

C
1

AD
1S

C
2

AD
1S

C
3

AD
1S

C
4

AMX1SL ADC1CN

A
D

1C
M

0
A

D
1C

M
1

A
D

1C
M

2
AD

1B
U

SY
A

D
1I

N
T

A
D

1T
M

A
D

1E
N

Start Conversion
Timer 3 Overflow

Timer 2 Overflow

000

001

010

011

Write to AD1BUSY

CNVSTR

1xx Write to AD0BUSY
(synchronized with
ADC0)

AM
X1

AD
0

AM
X1

AD
1

AM
X1

AD
2

8-to-1
AMUX

AIN1.0 (P1.0)

AIN1.1 (P1.1)

AIN1.2 (P1.2)

AIN1.3 (P1.3)

AIN1.4 (P1.4)

AIN1.5 (P1.5)

AIN1.6 (P1.6)

AIN1.7 (P1.7)

AD
1C

M

A
D

1C
M

Figure 9.3 Functional Block Diagram of ADC1

 200 Chapter 9 ADC and DAC

AMUX1 and PGA1
Eight of the AMUX1 input channels are available for measurement and
operate in the single-ended mode only. The channels are selected by the
AMX1SL SFR (Table 9.6). PGA1 amplifies the AMUX1 output signal by
an amount determined by the ADC1 Configuration register, ADC1CF
(Table 9.7). PGA1 can be programmed for gains of 0.5, 1, 2 or 4. The
gain defaults to 0.5 on reset.
The analog inputs have to be configured explicitly by clearing the
appropriate bits in the P1MDIN register. The AIN1 pins are mapped to
Port 1, otherwise Port 1 pins are set to digital I/O mode by default.

Example:

MOV P1MDIN,#00000111b ; P1.7 to P1.3: analog input
 ; P1.2 to P1.0: digital input

Starting ADC1 Conversions
Conversions can be started in five different ways, depending on the
ADC1 Start of Conversion Mode bits (AD1CM2-0) in register ADC1CN
(Table 9.8).
1) Software command (Writing 1 to AD1BUSY),

2) Overflow of Timer 2

3) Overflow of Timer 3

4) External signal input (Rising edge of CNVSTR)

5) Writing ‘1’ to the AD0BUSY (ADC0CN.4). i.e., initiate conversion
 of ADC1 and ADC0 with a single software command.

During conversion, the AD1BUSY bit remains set to 1 and is restored to
0 when the conversion is complete. The falling edge of AD1BUSY
triggers an interrupt (when enabled) and sets the AD1INT interrupt flag.
Converted data is stored in the ADC1 data word register, ADC1.

 Chapter 9 ADC and DAC 201

9.6 Data Word Conversion Map (8-bit)
The mapping of the ADC1 analog inputs to the ADC1 data word register
is much simpler. There is only one mode of input and the data word does
not need to be justified.

1 256GainADC Code Vin
VREF

= × ×

Example:

Suppose AIN1.0 is used as the analog input (AMX1SL=00H):

AIN1.0 – AGND (Volts) ADC1

256
255

×VREF FFH

2
VREF

 80H

256
127

×VREF 7FH

0 00H

9.7 Programming ADC1
ADC1 can be programmed through the following sequence:

1) Configure the voltage reference (REF0CN)

2) Configure appropriate pins on Port 1 as analog input (P1MDIN)

3) Set the SAR1 conversion clock frequency and PGA1 gain
(ADC1CF)

4) Select the desired multiplexer input channel (AMX1SL)

5) Set the appropriate control bits and start of conversion mode
 and turn on ADC1 (ADC1CN)

A similar polling procedure may be used to determine when a conversion
has completed if conversions are initiated by setting AD1BUSY to 1.

 202 Chapter 9 ADC and DAC

 1. Clear AD1INT to 0
 2. Set AD1BUSY to 1
 3. Poll AD1INT for 1
 4. Process ADC1 data

Example:

;--
; Vref setup:
; Enable internal bias generator and internal
; reference buffer, and select ADC1 reference from
; VREF1 pin.
;--

 MOV REF0CN, #00000011b

;--
; System clock = 16 MHz internal oscillator.
;--

 MOV OSCIN, #10000111b ;Enable 16 MHz Int Osc
IFRDY_wait: ;poll for IFRDY 1
 MOV A, OSCIN
 JNB ACC.4, IFRDY_wait

;--

MOV P1MDIN, #11111110b; P1.0 configured as
 ; analog input

MOV ADC1CF, #10000001b; SAR1 Conversion
 ; clock=941 kHz approx,
 ; Gain=1

MOV AMX1SL, #00H ; Select AIN1.0 input
MOV ADC1CN, #10000010b; Enable ADC1,

; Continuous Tracking
; Mode and conversion
; initiated on Timer 3
; overflow.

 Chapter 9 ADC and DAC 203

Example: Measuring Analog Input using ADC1

//-- Uses Timer 3 and interrupts
//-- Uses the internal oscillator at 16MHz
//-- Measure Analog Input at ADC1 Channel 0

#include <c8051f020.h>

//--
// 16-bit SFR Definitions for 'F02x
//--
sfr16 TMR3RL = 0x92; // Timer3 reload value
sfr16 TMR3 = 0x94; // Timer3 counter

//--
// Global CONSTANTS
//--
#define SYSCLK 16000000 //-- Internal Osc. 16MHz

sbit LED = P1^6;
unsigned char ADC1_reading; //-- variable to store ADC1 value

//-- function prototypes ---------------------------------------
void Init_Clock(void);
void Init_Port(void);
void Init_ADC1(void);
void Init_Timer3(unsigned int counts);
void Timer3_ISR(void);
//--

void main(void)
{
 EA = 0; //-- disable global interrupts

 WDTCN = 0xDE; //-- disable watchdog timer
 WDTCN = 0xAD;

 Init_Clock();
 Init_Port();
 Init_ADC1();
 LED = 0; //-- turn off the LED

 //-- Initialize Timer3 to generate interrupts
 Init_Timer3(SYSCLK/12/10);

 EA = 1; //-- enable global interrupts

 while(1) //-- go on forever
 {
 }

}

 204 Chapter 9 ADC and DAC

//--
// Initialises the clock source

void Init_Clock(void)
{
 OSCICN = 0x87; //-- 10000111b
 //-- Enable 16 MHz Internal Oscillator
 //-- and use it as System Clock
 //-- Missing Clock Detector Enabled

 while ((OSCICN & 0x10) == 0);//-- poll for IFRDY -> 1
}
//--

//--
// Configures the Crossbar and GPIO ports

void Init_Port(void)
{
 XBR1 = 0x00;
 XBR2 = 0x40; //-- Enable Crossbar and weak pull-ups

// (globally)
 P1MDIN = 0xFE; //-- P1.0 configured as analog input

// 11111110b, rest all output
 P1MDOUT |= 0x40; //-- Enable P1.6 (LED) as push-pull

 // output
 P1 |= 0x01; //-- Disable ouput driver for P1.0 by

 // setting P1.0=1
}
//--

//--
// Configure Timer3 to auto-reload and generate an interrupt
// at interval specified by <counts> using SYSCLK/12 as its
// time base.

void Init_Timer3 (unsigned int counts)
{
 TMR3CN = 0x00; //-- Stop Timer3; Clear TF3;
 //-- use SYSCLK/12 as timebase

 TMR3RL = -counts; //-- Init reload values
 TMR3 = 0xffff; //-- set to reload immediately
 EIE2 |= 0x01; //-- enable Timer3 interrupts
 TMR3CN |= 0x04; //-- start Timer3 by setting TR3

 // (TMR3CN.2) to 1
}
//--

 Chapter 9 ADC and DAC 205

//--
void Init_ADC1(void)
{
 REF0CN = 0x03; //-- Enable internal bias generator and

// internal reference buffer
 // Select ADC1 reference from VREF1 pin
 ADC1CF = 0x81; //-- SAR1 conversion clock=941KHz

// approx., Gain=1
 AMX1SL = 0x00; //-- Select AIN1.0 input
 ADC1CN = 0x82; //-- enable ADC1, Continuous Tracking

// Mode, Conversion initiated on Timer
// 3 overflow

}
//--

//--
// Interrupt Service Routine

void Timer3_ISR (void) interrupt 14
{
 TMR3CN &= ~(0x80); //-- clear TF3 flag

 //-- wait for ADC1 conversion to be over
 while ((ADC1CN & 0x20) == 0); //-- poll for AD1INT-->1
 ADC1_reading = ADC1; //-- read ADC1 data
 ADC1CN &= 0xDF; //-- clear AD1INT
}
//--

In this example we have again used Timer 3 to initiate the ADC1
conversion. Polling technique has been used to detect the completion of
ADC conversion.

To see the value stored in ADC1_reading, go to the code edit window in
the Silicon Labs IDE and right-click on the variable name and add it to
the Watch window. When you stop the program, the variable in the
Watch window will be updated and you will be able to see its latest value.

Instead of using the polling technique as illustrated in the above code,
we could also use the ADC1 interrupt which can be enabled by setting
EADC1 (EIE2.3). The ISR for ADC1 will be called each time the
conversion is completed. Inside the ISR we simply need to read the
ADC1 register and store the value in a variable and thereafter clear the
AD1INT flag.

 206 Chapter 9 ADC and DAC

9.8 ADC1 SFRs

AMX1SL: AMUX1 Channel Select Register

Bit Symbol Description
7-3 - UNUSED. Read=00000, Write=don’t care

3-0 AMX1AD2-0

AMX1 Address Bits
000: AIN1.0 selected
001: AIN1.1 selected
010: AIN1.2 selected
011: AIN1.3 selected
100: AIN1.4 selected
101: AIN1.5 selected
110: AIN1.6 selected
111: AIN1.7 selected

Table 9.6 AMX1SL: AMUX1 Channel Select Register

ADC1CF: ADC1 Configuration Register

Bit Symbol Description

7-3 AD1SC4-0

ADC1 SAR Conversion Clock frequency Bits
SAR Conversion clock is derived from system
clock by the following equation, where AD1SC
refers to the 5 bit value in AD1SC4-0, and
CLKSAR1 refers to the desired ADC1 SAR
conversion clock frequency.

1
1 1

SAR

SYSCLKAD SC
CLK

= −

2 - UNUSED. Read=0, Write=don’t care

1-0 AMP1GN1-0

ADC1 Internal Amplifier Gain (PGA)
00: Gain = 0.5
01: Gain = 1
10: Gain = 2
11: Gain = 4

Table 9.7 ADC1CF: ADC1 Configuration Register

CLKSAR1 has a maximum frequency of 6MHz.

 Chapter 9 ADC and DAC 207

ADC1CN: ADC1 Control Register

Bit Symbol Description

7 AD1EN
ADC1 Enable Bit
0: ADC1 Disabled. Low-power shutdown mode.
1: ADC1 Enabled. ADC1 is active and ready for data
 conversions.

6 AD1TM

ADC1 Track Mode Bit
0: Continuous tracking unless a conversion is made.
 ADC has to be enabled.
1: Tracks when CNVSTR is low, converts on rising
 edge of CNVSTR.

5 AD1INT

ADC1 Conversion Complete Interrupt Flag
NOTE: This flag must be cleared by software
0: ADC1 has not completed a data conversion since
 the last time this flag was cleared
1: ADC1 has completed a data conversion

4 AD1BUSY

ADC1 Busy Bit
0: ADC1 Conversion is complete or a conversion is not
 currently in progress. AD1INT is set on the falling
 edge of AD1BUSY.
1: ADC1 Conversion is in progress.

3-1 AD1CM2-0

ADC1 Start of Conversion Mode Select
If AD1TM=0:
000: ADC1 conversion initiated on every write of ‘1’ to
 AD1BUSY
001: ADC1 conversion initiated on overflow of Timer 3
010: ADC1 conversion initiated on rising edge of
 external CNVSTR
011: ADC1 conversion initiated on overflow of Timer 2
1xx: ADC1 conversion initiated on write of ‘1’ to
 AD0BUSY (synchronize with ADC0 software
 commanded conversions)
If AD0TM=1:
000: Tracking starts with the write of ‘1’ to AD1BUSY
 and lasts for 3 SAR1 clocks, followed by
 conversion.
001: Tracking started by overflow of Timer 3 and last
 for 3 SAR1 clocks, followed by conversion.
010: ADC1 tracks only when CNVSTR input is 0,
 conversion starts on rising CNVSTR edge.
011: Tracking started by overflow of Timer 2 and last
 for 3 SAR1 clocks, followed by conversion.
1xx: Tracking starts on write of ‘1’ to AD0BUSY and
 lasts 3 SAR1 clocks, followed by conversion.

0 - UNUSED. Read=0, Write=don’t care

Table 9.8 ADC1CN: ADC1 Control Register

 208 Chapter 9 ADC and DAC

9.9 12-Bit DACs (DAC0 and DAC1)
The DAC subsystem consists of two 12-bit DACs: DAC0 and DAC1. The
two DACs are functionally identical and each is configured via the
respective control registers, DAC0CN and DAC1CN. Figure 9.4 shows
the functional block diagram of the two DACs..

The DACs have an output swing of 0 V to VREF for a corresponding
input code range of 000H to FFFH. The voltage reference for each DAC
is supplied at the VREFD pin as explained in Chapter 2, section 2.8.

 DAC0

AV+

12

AGND

8

8

REF

DAC0

D
AC

0C
N

DAC0EN

DAC0MD1
DAC0MD0
DAC0DF2
DAC0DF1
DAC0DF0

D
A

C
0H

D
A

C
0L

D
ig

. M
U

X

La
tc

h
La

tc
h8

8

 DAC1

AV+

12

AGND

8

8

REF

DAC1

D
A

C
1C

N

DAC1EN

DAC1MD1
DAC1MD0
DAC1DF2
DAC1DF1
DAC1DF0

D
A

C
1H

D
A

C
1L

D
ig

. M
U

X

La
tc

h
La

tc
h8

8

D
A

C
0H

Ti
m

er
 3

Ti
m

er
 4

Ti
m

er
 2

D
A

C
1H

Ti
m

er
 3

Ti
m

er
 4

Ti
m

er
 2

Figure 9.4 Functional Block Diagram of DAC0 and DAC1

 Chapter 9 ADC and DAC 209

Output Scheduling
The DACs have four modes of output scheduling:

1) Output on Demand (Writing to high byte of DACx data word
 register, DACxH)

2) Timer 2 Overflow

3) Timer 3 Overflow

4) Timer 4 Overflow

NOTE: x = 0 or 1

The Output on Demand mode is the default mode. In this mode, the DAC
output is updated when DACxH is written to.

Writes to DACxL are held and have no effect on the DACx output until
DACxH is written to. Therefore, to write a 12 bit data word at full
resolution to DACx, the write sequence should be DACxL, followed by
DACxH.

The DACs can be used in 8 bit mode by initializing DACxL to the desired
value (typically 00H) and writing data to only DACxH. See section on
Output Scaling.

In the Timer Overflow modes, the DAC outputs are updated by a timer
overflow independently of the processor. Writes to both DAC data
registers (DACxL and DACxH) are held until an associated timer
overflow event occurs. The DACxH:DACxL contents are then copied to
the DAC input latches, allowing the DAC output to change to the new
value.

Timer Overflow Modes are useful for scheduling outputs at periodic
intervals, e.g. waveform generation at a defined output frequency.

 210 Chapter 9 ADC and DAC

Output Scaling
The format of the 12 bit data word in the DACxH and DACxL registers
can be configured by setting the appropriate DACxDF bits
(DACxCN.[2:0]). The five data word orientations are shown in Figure 9.5.

DACxDF2-0 = 000:

DACxH DACxL
 MSB LSB

001:

DACxH DACxL
 MSB LSB

010:

DACxH DACxL
 MSB LSB

011:

DACxH DACxL
 MSB LSB

1xx:

DACxH DACxL
MSB LSB

Figure 9.5 DAC Data Format

9.10 Programming the DACs
DACx can be programmed through the following sequence:

1) Configure the voltage reference (REF0CN).

2) Load the data word registers with the desired 12 bit digital value
 (DACxH and DACxL).

3) Set the appropriate output scheduling mode and data word
 format, and turn on DACx (DACxCN.7).

4) Set up and run the appropriate timers if applicable.

 Chapter 9 ADC and DAC 211

Example:

;--
; Vref setup:
; Enable internal bias generator and internal
; reference buffer. Pins 1-2 of J22 on the C8051F020
; development board must be connected to use the
; internal voltage reference generated as input to
; VREFD
;--

 MOV REF0CN, #00000011b

;--
; DAC0 Setup
;--

MOV DAC0H, #0FFh
MOV DAC0L, #0h
MOV DAC0CN, #10010100b; Enable DAC0 in left
 ; justified mode and
 ; update on Timer4 overflow

;--
; Timer 4 Setup
; NOTE: System clock = 22.1184 MHz external
; oscillator
;--

ORL CKCON, #00100000b ; Timer 4 uses system clock
MOV RCAP4L, #0Fh ; Set reload time to 0xFF0F
MOV RCAP4H, #0FFh ; FFFF-FF0F = SYSCLK/DAC
 ; sampling rate
 ; DAC sampling time=92160 Hz
MOV TL4, RCAP4L ; Initialize TL4 & TH4 before
MOV TH4, RCAP4H ; counting
MOV T4CON, #00000100b ; Start Timer 4 in 16 bit
 ; auto-reload mode

 212 Chapter 9 ADC and DAC

9.11 DAC0 SFRs

DAC0CN: DAC0 Control Register

Bit Symbol Description

7 DAC0EN

DAC0 Enable Bit
0: DAC0 disabled. DAC0 is in low power
 shutdown mode and the output pin is in a high
 impedance state.
1: DAC0 enabled. DAC0 is operational and the
 output pin is active.

6-5 - UNUSED. Read=00, Write=don’t care

4-3 DAC0MD1-0

DAC0 Mode Bits
00: DAC output updates occur on write to
 DAC0H.
01: DAC output updates occur on Timer 3
 overflow.
10: DAC output updates occur on Timer 4
 overflow.
11: DAC output updates occur on Timer 2
 overflow.

2-0 DAC0DF2-0

DAC0 Data Format Bits. See Figure 9.5
000: The most significant 4 bits of the DAC0
 Data Word are in DAC0H[3:0], while the
 least significant 8 bits are in DAC0L[7:0].
001: The most significant 5 bits of the DAC0
 Data Word are in DAC0H[4:0], while the
 least significant 7 bits are in DAC0L[7:1].
010: The most significant 6 bits of the DAC0
 Data Word are in DAC0H[5:0], while the
 least significant 6 bits are in DAC0L[7:2].
011: The most significant 7 bits of the DAC0
 Data Word are in DAC0H[6:0], while the
 least significant 5 bits are in DAC0L[7:3].
1xx: The most significant 8 bits of the DAC0 Data
 Word are in DAC0H[7:0], while the least
 significant 4 bits are in DAC0L[7:4].

Table 9.9 DAC0CN: DAC0 Control Register

DAC0H and DAC0L are used to store the most significant and least
significant DAC0 data word respectively.

 Chapter 9 ADC and DAC 213

9.12 DAC1 SFRs

DAC1CN: DAC1 Control Register

Bit Symbol Description

7 DAC1EN

DAC1 Enable Bit
0: DAC1 disabled. DAC1 is in low power
 shutdown mode and the output pin is in a high
 impedance state.
1: DAC1 enabled. DAC1 is operational and the
 output pin is active.

6-5 - UNUSED. Read=00, Write=don’t care

4-3 DAC1MD1-0

DAC1 Mode Bits
00: DAC output updates occur on write to DAC1H.
01: DAC output updates occur on Timer 3
 overflow.
10: DAC output updates occur on Timer 4
 overflow.
11: DAC output updates occur on Timer 2
 overflow.

2-0 DAC1DF2-0

DAC1 Data Format Bits. See Figure 9.5
000: The most significant 4 bits of the DAC1 Data
 Word are in DAC1H[3:0], while the least
 significant 8 bits are in DAC1L[7:0].
001: The most significant 5 bits of the DAC1 Data
 Word are in DAC1H[4:0], while the least
 significant 7 bits are in DAC1L[7:1].
010: The most significant 6 bits of the DAC1 Data
 Word are in DAC1H[5:0], while the least
 significant 6 bits are in DAC1L[7:2].
011: The most significant 7 bits of the DAC1 Data
 Word are in DAC1H[6:0], while the least
 significant 5 bits are in DAC1L[7:3].
1xx: The most significant 8 bits of the DAC1 Data
 Word are in DAC1H[7:0], while the least
 significant 4 bits are in DAC1L[7:4].

Table 9.10 DAC1CN: DAC1 Control Register

DAC1H and DAC1L are used to store the most significant and least
significant DAC1 data word respectively.

 214 Chapter 9 ADC and DAC

9.13 Tutorial Questions
1. Which are the five SFRs that should be configured when

programming ADC0? (Hint: refer to Figure 9.2 and Section 9.4)

2. Which are the four extra SFRs that have to be configured when
using ADC0 in the “Programmable Window Detector” mode?

3. What are the 4 possible events that can trigger ADC0 to start
conversion?

4. What are the largest and smallest input voltage values recognized
before the output is clipped at the full scale range if ADC0 is
configured in single-ended input mode?

5. What are the largest and smallest input voltage values recognized
before the output is clipped at the full scale range if ADC0 is
configured in differential input mode?

6. Suppose ADC0 is configured such that all 8 inputs are single-
ended. Show the contents of AMX0CF and AMX0SL if we want to
convert channel 5.

7. Which are the five SFRs that should be configured when
programming ADC1? (Hint: refer to Figure 9.3 and Section 9.8)

8. Which are the 5 possible events that can trigger ADC0 to start
conversion?

9. What is ADC1’s operational mode and what are the largest and
smallest input voltage values recognized before the output is
clipped at the full scale range?

10. Which are the four SFRs that should be configured when
programming DAC1? (Hint: refer to Figure 9.4 and Section 9.12)

11. What are the 4 possible events that can be used to schedule the
DACs output?

12. What is the DAC0 and DAC1 full scale output voltage swing?

13. What are the 5 data word formats that can be used with the
DACs?

10

Serial Communication

10.0 Introduction 216
10.1 UART0 and UART1 217
10.2 Programming the UARTs 219
10.3 Operation Modes 220

8-Bit Shift Register (Mode 0) – Optional, 8-Bit UART with
Variable Baud Rate (Mode 1), 9-Bit UART with Fixed Baud
Rate (Mode 2), 9-Bit UART with Variable Baud Rate
(Mode 3)

10.4 Interrupt Flags 225
10.5 UARTx SFRs 227

SCONx: UARTx Control Register, PCON: Power Control
Register

10.6 Blinking LED at Different Frequencies –
C Programming Example 229

10.7 Tutorial Questions 233

 216 Chapter 10 Serial Communication

10.0 Introduction
With serial communication, data is transferred one bit at a time. An
interface device converts the CPU’s parallel data and transmits it across
a single link to another device. This data has to be reconstructed again
before it can be understood by the device.

There are 2 types of serial communication – asynchronous and
synchronous.

With asynchronous communication, the transmitter and receiver do not
share a common clock. The transmitter shifts the data onto the serial line
using its own clock. The transmitter also adds the start, stop and parity
check bits as shown in Figure 10.1. The receiver will extract the data
using its own clock and convert the serial data back to the parallel form
after stripping off the start, stop and parity bits.

D0 D1 D2 D3 D4 D5 D6 D7

Start Bit 1 or 2 Stop Bits Parity Bit

1 Asynchronous Byte

Figure 10.1 Asynchronous Serial Data Format

Asynchronous transmission is easy to implement but less efficient as it
requires an extra 2-3 control bits for every 8 data bits. This method is
usually used for low volume transmission.

In the synchronous mode, blocks of data bytes are sent at a time over a
serial line as shown in Figure 10.2. The data block is padded with one or
more synchronizing bytes so that the receiver can identify which group of
bits in the serial stream are data bits. A header is also included to inform
the receiver about the number of data bytes in the block and other
relevant information. At the tail end of the block are the error check bytes
and the trailer consisting of synchronizing bytes. The error check bytes
allow the receiver to detect any errors that might have occurred during
the transmission.

 Chapter 10 Serial Communication 217

Sync
Char

Sync
Char

Header
Byte

Data
Char 1

Header
Byte

Data
Char 2

Data
Char n

Check
Byte

Check
Byte

Sync
Char

Sync
Char

1 Synchronous Data Block

Figure 10.2 Synchronous Serial Data Format

The 8051 includes on-chip devices called Universal Asynchronous
Receiver/Transmitters (UART) for serial communication. The essential
operation of a UART is parallel-to-serial conversion of output data and
serial-to-parallel conversion of input data. As the name suggests, only
asynchronous serial communications is supported.

UARTs are programmable devices capable of independent operation
without much intervention from the CPU. In most cases, the CPU
initializes the device to perform a particular operation and then merely
sends the data to the device for conversion. The device appears
transparent to the CPU.

The UART takes the data byte and adds a single start bit. It then sends
the start bit followed by the data bits (LSB first) out through the serial
transmission line. Depending on how the device was initially configured,
a parity bit may or may not be added followed by one or two stop bits.

The start and stop bits help to ‘frame’ the data byte such that the
receiving end can determine and extract the data. The parity bit is used
to detect transmission errors and not to correct the corrupted data.

The output of the UART (in serial format) is passed through a voltage
level shifter to invert and convert the TTL logic levels to RS-232C logic
levels of ±12V. This signal is then transmitted to other external devices
via the serial link as shown in Figure 10.3.

10.1 UART0 and UART1
The UARTs on the C8051F020 (UART0 & UART1) can operate in
several modes over a wide range of frequencies. They feature full duplex
operation (simultaneous transmission and reception) and receiver
buffering, allowing one character to be received and held in a

 218 Chapter 10 Serial Communication

CPU

UART

TTL to
RS-232C

Level Shifter
Parallel
Data

Tx Tx

Rx Rx

External
Service
Device

(a) (b)

LSB MSB

+12V

-12V

Start bit Parity bit
Stop bits

Data = 49H

(b) Serial output, RS-232C levels

LSB MSB

5V

0V

Start bit Parity bit
Stop bits

Data = 49H

(a) TTL output from UART

Figure 10.3 Asynchronous Serial Transmission of 7-Bit Data

buffer while a second is being received. If the CPU reads the first
character before the second has been fully received, data are not lost. A
Receive Overrun bit indicates when new received data is latched into the
receiver buffer before the previous received byte is read.

NOTE: x = 0 or 1. The two UARTs are functionally identical.

The UART block diagram is shown in Figure 10.4. Each UART is
accessed by two SFRs, SBUFx and SCONx. The Serial Port Buffer
(SBUFx) is essentially two buffers - writing loads data to be transmitted
and reading accesses received data. These are two separate and
distinct buffers (registers): the transmit write-only buffer and the receive
read-only register.

The Serial Port Control register (SCONx) contains status and control
bits. The control bits set the operating mode for the serial port, and
status bits indicate the end of the character transmission or reception.
The status bits are tested in software (polling) or programmed to cause
an interrupt.

The serial port frequency of operation, or baud rate, can be fixed
(derived from the on-chip oscillator) or variable. If a variable baud rate is
used, Timer 1 supplies the baud rate clock and must be programmed
accordingly.

In the following sections we will discuss the operational modes of the
UARTs and the steps required to configure them for use.

 Chapter 10 Serial Communication 219

Tx Control

Tx Clock
Tx IRQ

Zero Detector

Send

Shift

SET

QD
CLR

Stop Bit
Gen.

TB8

Start

Data

Write to
SBUF

Crossbar
TX

Port I/O

Serial Port
(UART0/1)
Interrupt

TI

RI

 SCON
S
M
2

T
B
8

R
B
8

T
I

R
I

S
M
1

S
M
0

R
E
N

Rx Control

Start

Rx Clock Load
SBUF

0x1FFShift

EN Rx IRQ

UART
Baud Rate
Generation

Logic

SFR Bus

Input Shift Register
(9 bits)

Frame Error
Detection

SBUF
(Receive Latch)

Read
SBUF

SFR Bus

SADDR

SADEN
Match Detect

RB8Load SBUF

Crossbar
RX

SBUF
(Transmit Shift)

Address
Match

Figure 10.4 UART Block Diagram

10.2 Programming the UARTs

The UARTs can be programmed through the following sequence:
1) Configure the digital crossbar (XBR0 or XBR2) to enable UART

operation.
2) Initialize the appropriate Timers for desired baud rate generation.
3) Enable/disable the baud rate doubler SMODx (PCON)
4) Select the serial port operation mode and enable/disable UART
 reception (SCONx)

 220 Chapter 10 Serial Communication

The digital crossbars have to be configured to enable TXx and RXx as
external I/O pins (XBR0.2 for UART0 and XBR2.2 for UART1). In
addition XBARE (XBR2.6) must be set to 1 to enable the crossbar.

Example:

ORL XBR0,#00000100b ;Enable UART0 I/O
ORL XBR2,#01000000b ;Enable Crossbar
ORL CKCON,#00010000b ;Timer 1 uses system clock
 ;of 22.1184MHz
MOV TMOD,#20h ;Timer1 mode 2, 8 bit auto
 ;reload
MOV TH1, #F4h ;Baud rate = 115200
SETB TR1 ;Start Timer 1
ORL PCON,#80h ;Disable UART0 baud rate div-
 ;by-2
MOV SCON0,#01010000b ;UART0 mode 1 and enable RX

10.3 Operation Modes
The UARTs have four modes of operation, selectable by configuring the
SM bits in SCONx. Three modes enable asynchronous communications
(Modes 1 to 3) while the fourth mode (Mode 0) operates as a simple shift
register.

8-Bit Shift Register (Mode 0)
Mode 0 is selected by clearing the SM0x and SM1x bits of SCONx (refer
to Table 10.1 in section 10.5). Serial data enters and exits through RXx
while TXx outputs the shift clock. Mode 0 interconnect schematic is
shown in Figure 10.5

8 Extra Outputs

C8051F020
TXx

RXx

 CLK

 Data

Shift Register

Figure 10.5 UARTx Mode 0 Interconnect Diagram

 Chapter 10 Serial Communication 221

Eight data bits are transmitted or received on the RXx pin with the LSB
first, and the TIx, Transmit Interrupt Flag (SCONx.1) is set at the end of
the 8th bit time. The baud rate is fixed at

 12
SYSCLK

Data transmission begins when an instruction writes a data byte to the
SBUFx register. Data are shifted out on RXx with clock pulses sent out
TXx (Figure 10.6). Each transmitted bit is valid on the RXx pin for 1
machine cycle.

Data reception begins when the RENx Receive Enable bit (SCONx.4) is
set to 1 and the RIx Receive Interrupt Flag (SCONx.0) is cleared. One
cycle after the eighth bit is shifted in, the RIx flag is set and reception
stops until software clears the RIx bit. An interrupt will occur if enabled
when either TIx or RIx are set.

The general rule is to set RENx at the beginning of a program to initialize
the UART and then clear RIx to begin a data input operation. When RIx
is cleared, clock pulses are written out to TXx, beginning the next
machine cycle and data are clocked in from RXx.

RXx is used for both data input and output and TXx serves as the clock.
The clocking of data into the UART occurs on the rising edge of TXx.

RXx (Data out)

TXx (CLK out)

Mode 0 Transmit

D0 D1 D2 D3 D4 D5 D6 D7

RXx (Data in)

TXx (CLK out)

Mode 0 Receive

D0 D1 D2 D3 D4 D5 D6 D7

Figure 10.6 Timing Diagram of Mode 0

 222 Chapter 10 Serial Communication

A possible application of this mode is to expand the output capability of
the chip. A serial-to-parallel shift register IC can be connected to the TXx
and RXx pins to provide an extra 8 output lines as shown in Figure 10.5.
Additional shift registers may be cascaded to the first for further
expansion.

In Mode 0, an external pull-up is typically required because RXx is forced
to open-drain.

8-Bit UART with Variable Baud Rate (Mode 1)
Mode 1 is selected when SM0x = 0 and SM1x = 1. It provides standard
asynchronous, full duplex serial communication. 10 bits are transmitted
on TXx or received on RXx for each data byte. These consist of a start
bit (always 0), the eight data bits (LSB first), and a stop bit (always 1).
For a receive operation, the eight data bits are stored in SBUFx and the
stop bit goes into RB8x (SCONx.2).

The baud rate is set by the overflow rate of Timer 1, Timer 2 (UART0) or
Timer 4 (UART1), or a combination of two (T1 and T2, or T1 and T4),
one for transmit and the other for receive. The UARTs can use Timer 1
operating in 8-Bit Auto-Reload Mode, or Timers 2 or 4 operating in
Baud Rate Generator Mode to generate the baud rate. The TXx and
RXx clocks are selected separately. If TCLKx and/or RCLKx (in T2CON /
T4CON register) are set to logic 0, Timer 1 acts as the baud rate source
for the TXx and/or RXx circuits, respectively. Please refer to Chapter 8
for complete timer configuration details.

The Mode 1 baud rate equations are shown below (for the use of Timer 1
and for the use of Timer 2 or 4), where T1M is the Timer 1 Clock Select
bit (CKCON), TH1 is the 8-bit reload register for Timer 1, SMODx is the
UARTx baud rate doubler (register PCON) and [RCAPzH , RCAPzL] is
the 16-bit reload register for Timers 2 or 4. z = 2 or 4.

()1 12 1
32 256 1

T MSMODx SYSCLKBaudRate
TH

−⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

×= ×
−

2
 for Timer 1

 Chapter 10 Serial Communication 223

[]()RCAPzLRCAPzH
SYSCLKBaudRate

,6553632 −×
= for Timer 2 or 4

Data transmission is initiated by writing to SBUFx. Data are shifted onto
TXx beginning with the start bit, followed by the eight data bits, then the
stop bit. The period for each bit is the reciprocal of the baud rate as
programmed in the timer. The TIx Transmit Interrupt Flag (SCONx.1) is
set at the beginning of the stop-bit time.

Data reception can begin any time after the RENx Receive Enable bit
(SCONx.4) is set to 1. Reception is initiated by a 1-to-0 transition on
RXx. The incoming bit stream is sampled in the middle of each bit period
(Figure 10.7). The receiver includes “false start bit detection”, ensuring
that a start bit is valid and not triggered by noise. This works by requiring
a stop bit to be detected eight counts after the first 1-to-0 transition. If this
does not occur, it is assumed that the 1-to-0 transition was triggered by
noise and is not a valid start bit. The receiver is reset and returns to the
idle state, looking for the next 1-to-0 transition.

Bit Times

D1 D2 D3 D4 D5 D6 D7 D0
Start
Bit

Mark

Space
Stop
Bit

Bit Sampling

Figure 10.7 Timing Diagram of Mode 1

If a valid start bit was detected, character reception continues. The start
bit is skipped, the 8 data bits are stored in SBUFx, the stop bit is stored
in RB8x and the RIx flag is set. However, these only occur if the following
conditions exist:

1. RIx = 0
2. SM2x = 0 (stop bit ignored) or SM2x = 1 and the received stop bit = 1

If these conditions are not met, SBUFx and RB8x will not be loaded and
the RIx flag will not be set. An interrupt will occur if enabled when either
TIx or RIx is set. The requirement that RIx = 0 ensures that software has
read the previous character (and cleared RIx).

 224 Chapter 10 Serial Communication

9-Bit UART with Fixed Baud Rate (Mode 2)
Mode 2 is selected when SM0x = 1 and SM1x = 0. 11 bits are
transmitted or received, a start bit, eight data bits, a programmable ninth
data bit, and a stop bit (Figure 10.8). On transmission, the ninth bit is
whatever has been put in TB8x in SCONx. It can be assigned the value
of the parity flag P in the PSW or used in multiprocessor
communications. On reception, the ninth bit received is placed in RB8x
and the stop bit is ignored.

If the communications require 8 data bits plus even parity, the following
example can be used to transmit the 8 bits in ACC with even parity
added in the 9th bit. If odd parity is required, the carry bit can be
complemented before moving to TB80.

Example:

MOV C,P ; Put even parity bit in TB80 this
MOV TB80, C ; becomes the 9th data bit.
MOV SBUF0,A ; Move 8 bits from ACC to SBUF0

NOTE: SCON0 is bit addressable but SCON1 is byte addressable.

The baud rate in this mode is either 1/32nd or 1/64th of the system clock
frequency, depending on the value of the SMODx bit in the PCON SFR
(SMOD0 for UART0 and SMOD1 for UART1). The baud rate is given by
the following equation-

2
64

SMODx SYSCLKBaudRate ⎛ ⎞
⎜ ⎟
⎝ ⎠

= ×

Bit Times

D1 D2 D3 D4 D5 D6 D7 D0
Start
Bit

Mark
Space Stop

Bit

Bit Sampling

D8

Figure 10.8 Timing Diagram of Mode 2 and Mode 3

 Chapter 10 Serial Communication 225

Data transmission begins when an instruction writes a data byte to
SBUFx. The TIx Transmit Interrupt Flag (SCONx.1) is set at the
beginning of the stop bit time. Data reception can begin any time after
the RENx Receive Enable bit (SCONx.4) is set to 1. After the stop bit is
received, the data byte will be loaded into the SBUFx receive register if
RIx is 0 and one of the following conditions is met:

1. SM2x = 0 (9th bit ignored)
2. SM2x = 1, the received 9th bit = 1 and the received address matches

the UARTx address.

Both modes 2 and 3 support multiprocessor communications and
hardware address recognition.

9-Bit UART with Variable Baud Rate (Mode 3)
Mode 3 is the same as Mode 2 except the baud rate is generated by the
programmable timer as in Mode 1. In fact, modes 1, 2, and 3 are very
similar. The differences lie in the baud rates (fixed in mode 2, variable in
modes 1 and 3) and in the number of data bits (8 in mode 1, 9 in modes
2 and 3).

Mode 3 operation transmits 11 bits: a start bit, 8 data bits (LSB first), a
programmable 9th data bit, and a stop bit.

10.4 Interrupt Flags
The Receive and Transmit flags (RIx and TIx) in SCONx play an
important role in serial communications. Both the bits are set by
hardware but must be cleared by software.

RIx is set at the end of character reception and indicates “receive buffer
full”. This condition is tested in software (polled) or programmed to cause
an interrupt. See Chapter 11 for more information on interrupts. If the
application wishes to input (i.e. read) a character from the device
connected to the serial port (e.g. COM1 port of PC), it must wait until RIx
is set, then clear RIx and read the character from SBUFx.

Example:
 WAIT: JNB RI0,WAIT ; Check RI0 until set
 CLR RI0 ; Clear RI0
 MOV A,SBUF0 ; Read character

 226 Chapter 10 Serial Communication

TIx is set at the end of character transmission and indicates “transmit
buffer empty”. If the application wishes to send a character to the device
connected to the serial port, it must first check that the serial port is
ready. If a previous character was sent, we must wait until transmission
is finished before sending the next character.

Example:
 WAIT: JNB TI0,WAIT ; Check TI0 until set
 CLR TI0 ; Clear TI0
 MOV SBUF0,A ; Send character

The receive and transmit instruction sequences above are usually part of
standard input character and output character subroutines. The following
example illustrates a subroutine called OUTCHR which transmits the 7-
bit ASCII code in the accumulator out UART0, with odd parity as the 8th
bit.
Example:

OUTCHR: MOV C,P ; Put parity bit in C flag
 CPL C ; Change to odd parity
 MOV ACC.7,C ; Add to character code
AGAIN: JNB TI0,AGAIN ;TX empty? No: check
again
 CLR TI0 ; Yes: clear flag
 MOV SBUF0,A ; and send
 CLR ACC.7 ; Strip off parity bit
 RET

The OUTCHR subroutine is a building block and is of little use by itself.
At a “higher level”, this subroutine is called to transmit a single character
or a string of characters.

Example:
 MOV A,#’Z’ ; Transmit ASCII code for
 CALL OUTCHR ; “Z” to serial port

 Chapter 10 Serial Communication 227

10.5 UARTx SFRs

SCONx: UARTx Control Register

Bit Symbol Description

7-6 SM0x-
SM1x

Serial Port Operation Mode
00: Mode 0: Shift Register Mode
01: Mode 1: 8 Bit UART, Variable Baud Rate
10: Mode 2: 9 Bit UART, Fixed Baud Rate
11: Mode 3: 9 Bit UART, Variable Baud Rate

5 SM2x

Multiprocessor Communication Enable
The function of this bit depends on the Serial Port Operation
Mode.
Mode 0: No effect.
Mode 1: Checks for valid stop bit.
 0: Logic level of stop bit is ignored.
 1: RIx will only be activated if stop bit is 1
Mode 2 & 3: Multiprocessor Communications Enable.
 0: Logic level of 9th bit is ignored.
 1: RIx is set and an interrupt is generated only when
 the 9th bit is 1 and the received address matches
 the UARTx address or broadcast address.

4 RENx
Receive Enable
0: UARTx reception disabled
1: UARTx reception enabled

3 TB8x
9th Transmission Bit
The logic level of this bit will be assigned to the 9th transmission
bit in Modes 2 & 3. It is not used in Modes 0 & 1.
Set or cleared by software as required.

2 RB8x
9th Receive Bit
This bit is assigned the logic level of the 9th bit received in
Modes 2 & 3. In Mode 1, if SM2x is 0, RB8x is assigned the
logic level of the received stop bit. RB8 is not used in Mode 0.

1 TIx

Transmit Interrupt Flag
Set by hardware when a byte of data has been transmitted by
UARTx (after the 8th bit in Mode 0, or at the beginning of the
stop bits in other modes). When the UARTx interrupt is enabled,
setting this bit causes the CPU to vector to the UARTx ISR. This
bit must be cleared manually by software.

0 RIx

Receive Interrupt Flag
Set by hardware when a byte of data has been received by
UARTx (as selected by the SM2x bit). When the UARTx
interrupt is enabled, setting this bit causes the CPU to vector to
the UARTx ISR. This bit must be cleared manually by software.

Table 10.1 SCONx: UARTx Control Register

 228 Chapter 10 Serial Communication

The other registers associated with the UARTs are SBUFx, SADDRx and
SADENx. SBUFx accesses 2 registers, a transmit shift register and a
receive latch register. When data is written to SBUFx, it goes to the
transmit shift register and is held for serial transmission. Writing a byte to
SBUFx initiates transmission. A read of SBUFx returns the contents of
the receive latch. SADDRx and SADENx deal with slave addresses and
will not be discussed here.

PCON: Power Control Register

Bit Symbol Description

7 SMOD0
UART0 Baud Rate Doubler Enable
0: UART0 baud rate divide-by-two enabled.
1: UART0 baud rate divide-by-two disabled.

6 SSTAT0 UART0 Enhanced Status Mode Select
5 Reserved Read is undefined. Must write 0.

4 SMOD1
UART1 Baud Rate Doubler Enable
0: UART1 baud rate divide-by-two enabled.
1: UART1 baud rate divide-by-two disabled.

3 SSTAT1 UART1 Enhanced Status Mode Select
2 Reserved Read is undefined. Must write 0.

1 STOP
STOP Mode Select
This bit will always read ‘0’. Writing a ‘1’ will place
the microcontroller into STOP mode. (Turns off
oscillator).

0 IDLE

IDLE Mode Select
This bit will always read ‘0’. Writing a ‘1’ will place
the microcontroller into IDLE mode. (Shuts off
clock to CPU, but clock to Timers, Interrupts, and
all peripherals remain active).

Table 10.2 PCON: Power Control Register

 Chapter 10 Serial Communication 229

10.6 Blinking LED at Different Frequencies –
C Programming Example
In this program, the Green LED (P1.6) on the target C8051F020
development board blinks at different speeds – slow, medium and fast. It
receives a command on the UART0 port from a program running on the
PC. The user interface of the PC program is shown in Figure 10.9

Figure 10.9 GUI of the Serial Communication Program running on the PC

The user may click on the desired radio button and click the Send button
to send the command to the target board. The command sent is a one
byte data – 0x01 for slow, 0x02 for medium and 0x03 for fast blinking
speed respectively. The serial communication is at a baud rate of
115200. The baud rate is generated using Timer 1. Each time a new
command is received by the program running on C8051F020, the
blinking speed of the LED is altered accordingly. The program code is
given below:

 230 Chapter 10 Serial Communication

//-- This program makes the LED at P1.6 blink at different
// speeds (SerialComm.C)
//-- Uses Timer 3 and interrupts for the blinking frequency
//-- Uses the external crystal oscillator 22.11845 MHz
//-- Receives commands from PC to change the blinking speed
//-- Timer 1 is used to generate Baud rate for UART0

#include <c8051f020.h>

//--
// 16-bit SFR Definitions for 'F02x
//--
sfr16 TMR3RL = 0x92; // Timer3 reload value
sfr16 TMR3 = 0x94; // Timer3 counter

//--
// Global CONSTANTS
//--
#define BLINKCLK 2000000

sbit LED = P1^6;
unsigned char LED_count;
unsigned char blink_speed;
char received_byte;
unsigned short new_cmd_received; //-- set each time new

// command is received

//-- function prototypes ---------------------------------------
void Init_Clock(void); //-- initialize the clock to use external

// crystal oscillator
void Init_Port(void); //-- Configures the Crossbar and GPIO

// ports
void Init_UART0(void); //-- configure and initialize the UART0

// serial comm
void Init_Timer3(unsigned int counts);
void Timer3_ISR(void); //-- ISR for Timer 3
void UART0_ISR(void); //-- ISR for UART0
//--

void Init_Clock(void)
{
 OSCXCN = 0x67; //-- 0110 0111b
 //-- External Osc Freq Control Bits (XFCN2-0) set to 111

// because crystal frequency > 6.7 MHz
 //-- Crystal Oscillator Mode (XOSCMD2-0) set to 110

 //-- wait till XTLVLD pin is set
 while (!(OSCXCN & 0x80));

 OSCICN = 0x88; //-- 1000 1000b
 //-- Bit 2 : Internal Osc. disabled (IOSCEN = 0)
 //-- Bit 3 : Uses External Oscillator as System Clock

// (CLKSL = 1)
 //-- Bit 7 : Missing Clock Detector Enabled (MSCLKE = 1)
}

 Chapter 10 Serial Communication 231

void Init_Port(void) //-- Configures the Crossbar & GPIO ports
{
 XBR0 = 0x04; //-- Enable UART0
 XBR1 = 0x00;
 XBR2 = 0x40; //-- Enable Crossbar and weak pull-ups

// (globally)
 P0MDOUT |= 0x01; //-- Enable TX0 as a push-pull o/p
 P1MDOUT |= 0x40; //-- Enable P1.6 (LED) as push-

// pull output
}

//--
void Init_UART0(void)
{

//-- set up Timer 1 to generate the baude rate (115200)
// for UART0

 CKCON |= 0x10; //-- T1M=1; Timer 1 uses the system clock
// 22.11845 MHz

 TMOD = 0x20; //-- Timer 1 in Mode 2 (8-bit auto-
// reload)

 TH1 = 0xF4; //-- Baud rate = 115200
 TR1 = 1; //-- start Timer 1 (TCON.6 = 1)
 T2CON &= 0xCF; //-- Timer 1 overflows used for receive &
 // transmit clock (RCLK0=0, TCLK0=0)
 //-- Set up the UART0
 PCON |= 0x80; //-- SMOD0=1 (UART0 baud rate divide-by-2

// disabled)
 SCON0 = 0x50; //-- UART0 Mode 1, Logic level of stop

// bit ignored and Receive enabled

 //-- enable UART0 interrupt
 IE |= 0x10;
 IP |= 0x10; //-- set to high priority level

 RI0= 0; //-- clear the receive interrupt flag;

// ready to receive more
}

//--
//-- Configure Timer3 to auto-reload and generate an interrupt
// at interval specified by <counts> using SYSCLK/12 as its
// time base.

void Init_Timer3 (unsigned int counts)
{
 TMR3CN = 0x00; //-- Stop Timer3; Clear TF3;
 //-- use SYSCLK/12 as time base

 TMR3RL = -counts; //-- Init reload values
 TMR3 = 0xffff; //-- set to reload immediately
 EIE2 |= 0x01; //-- enable Timer3 interrupts
 TMR3CN |= 0x04; //-- start Timer3 by setting TR3

 // (TMR3CN.2) to 1
}

 232 Chapter 10 Serial Communication

//-- This routine changes the state of the LED whenever Timer3
// overflows.
void Timer3_ISR (void) interrupt 14
{
 TMR3CN &= ~(0x80); //-- clear TF3

 LED_count++;
 if ((LED_count % 10) == 0) //-- do every 10th count
 {
 LED = ~LED; //-- change state of LED
 LED_count = 0;
 }
}

//--
void UART0_ISR(void) interrupt 4
{
 //-- pending flags RI0 (SCON0.0) and TI0(SCON0.1)
 if (RI0 == 1) //-- interrupt caused by received byte
 {
 received_byte = SBUF0; //-- read the input buffer
 RI0 = 0; //-- clear the flag
 new_cmd_received=1;
 }
}

//--
void main(void)
{
 blink_speed = 10; received_byte = 2;
 new_cmd_received = 0; LED_count = 0; LED = 0;
 EA = 0; //-- disable global interrupts
 WDTCN = 0xDE; //-- disable watchdog timer
 WDTCN = 0xAD;
 Init_Clock(); Init_Port();
 Init_Timer3(BLINKCLK/12/blink_speed); Init_UART0();
 EA = 1; //-- enable global interrupts
 while(1) //-- go on forever
 {
 if (new_cmd_received == 1)
 {
 switch (received_byte)
 {
 case 1 : blink_speed = 1; break; // slow
 case 2 : blink_speed = 10; break; // medium
 case 3 : blink_speed = 50; break; // fast
 default : blink_speed = 10; break;
 }
 EA = 0;
 Init_Timer3(BLINKCLK/12/blink_speed);
 EA = 1; //-- enable interrupts
 new_cmd_received = 0;
 }
 }

}

 Chapter 10 Serial Communication 233

10.7 Tutorial Questions

1. Ignoring the SFRs that are required to configure the digital
crossbar, what are the two SFRs that should be configured when
programming UART0? (Hint: refer to Section 10.3)

2. What are the different modes of operation for UART0 and UART1?

3. What is the effect of clearing SMOD0 (PCON.7) and SMOD1
(PCON.4) to 0?

4. UART1 is to be used to communicate with an external device
using a serial protocol that uses a start bit, 8 data bits, 1 parity bit,
and a stop bit at a baud rate of 9600. How should SCON1 be
configured?

5. Sketch the timing diagram for the 7 bit ASCII coded character ‘Z’
with even parity and 1 stop bit as it is transmitted out of UART0.

 a) If the above transmission baud rate is 1200, what is the
 maximum number of characters that can be transmitted
 in 1 second?

 b) Write a subroutine to enable UART0 to transmit the
 character ‘Z’ continuously at a baud rate of 115200.

11

Interrupts

11.0 Introduction 236
11.1 Interrupt Organization 236

Interrupts Handler, Priority Level Structure
11.2 Interrupt Process 239
11.3 Interrupt Vectors 239
11.4 External Interrupts 240
11.5 Interrupt Latency 241
11.6 Interrupt SFRs 241

IE: Interrupt Enable, IP: Interrupt Priority, EIE1: Extended
Interrupt Enable 1, EIE2: Extended Interrupt Enable 2, EIP1:
Extended Interrupt Priority 1, EIP2: Extended Interrupt
Priority 2, P3IF: Port 3 Interrupt Flag Register

11.7 Tutorial Questions 249

 236 Chapter 11 Interrupts

11.0 Introduction

An interrupt is an event or an occurrence of a condition which causes a
temporary suspension of the current program. Control is then passed to
another special software sub-routine, called the Interrupt Service Routine
(ISR). The ISR handles and executes the operations that must be
undertaken in response to the interrupt. Once it finishes its task, it will
return control back to the original program, which resumes from where it
was left off.

Sometimes multiple interrupts may happen at the same time. In
situations like this, the CPU needs to decide which interrupt should be
serviced first. This is usually done according to a pre-determined
sequence and importance of the interrupt. This is termed as interrupt
service priority.

11.1 Interrupt Organization
The C8051F020 supports 22 interrupt sources as summarized in Table
11.1, including 4 external interrupts, 5 timer interrupts and 2 serial port
interrupts. Each interrupt source has one or more associated interrupt-
pending flag(s) located in an SFR. When a peripheral or an external
source meets a valid interrupt condition, the associated interrupt-pending
flag is set to 1. Once a system is reset, all the interrupts will be disabled,
and they must be enabled individually by software.

In the case when two or more interrupts occur simultaneously while
another is being serviced, there are two approaches to be considered.
One is the polling sequence and another is a two-level priority scheme.
The polling sequence is fixed while the interrupt priority level is software
programmable.

Interrupt Handler
Each interrupt source can be individually enabled or disabled through the
use of associated interrupt enable bit in the SFRs IE, EIE1 and EIE2
(Tables 11.2, 11.4, and 11.5). However one must set the global
enable/disable bit, EA (IE.7), to logic 1 before any individual interrupt is
enabled. If the EA bit is ‘0’, none of the interrupt sources will be
recognized by the CPU regardless of their interrupt enable settings.

 Chapter 11 Interrupts 237

Example:

SETB EA ; Enable Global Enable bit
ORL EIE2,#4H ; Enable Timer4 interrupt

; the second instruction can be replaced by
; SETB EIE2.2

If interrupts are enabled and the interrupt pending (status) flag remains
set after the CPU completes the RETI instruction, a new interrupt request
will be generated immediately and the CPU will re-enter the ISR after the
completion of the next instruction.

If interrupts are disabled, the interrupt-pending flag is ignored by the
hardware and program execution continues as normal.

Priority Level Structure
Each interrupt source can be individually programmed to one of two
priority levels, low or high, through an associated interrupt priority bit in
the SFRs IP, EIP1 and EIP2 (Tables 11.3, 11.6, and 11.7). These three
SFRs are cleared upon a system reset to put all interrupts at low priority
by default. A low priority ISR is pre-empted by a high priority interrupt. A
high priority interrupt cannot be pre-empted.
If two interrupt request of different priority levels are recognized
simultaneously, the one with higher priority level will be serviced first. If
both the requests have the same priority level, an internal polling
sequence decides which request is serviced first. Thus within each
priority level there is a second priority structure determined by the polling
sequence as listed in the Priority Order Column in Table 11.1. In short,
the ‘priority within level’ structure is used to resolve simultaneous
interrupt requests of the same priority level.

 238 Chapter 11 Interrupts

In

te
rr

up
t

So
ur

ce

In
te

rr
up

t
Ve

ct
or

Pr
io

rit
y

O
rd

er

Pe
nd

in
g

Fl
ag

En
ab

le

Fl
ag

Pr
io

rit
y

C
on

tr
ol

Reset 0000 Top None Always Enabled Always
Highest

External
Interrupt 0
(/INT0)

0003 0 IE0 (TCON.1) EX0 (IE.0) PX0 (IP.0)

Timer 0
Overflow 000B 1 TF0 (TCON.5) ET0 (IE.1) PT0 (IP.1)

External
Interrupt 1
(/INT1)

0013 2 IE1 (TCON.3) EX1 (IE.2) PX1 (IP.2)

Timer 1
Overflow 001B 3 TF1 (TCON.7) ET1 (IE.3) PT1 (IP.3)

UART0 0023 4 RI0 (SCON0.0)
TI0 (SCON0.1) ES0 (IE.4) PS0 (IP.4)

Timer 2
Overflow 002B 5 TF2 (T2CON.7) ET2 (IE.5) PT2 (IP.5)

Serial
Peripheral
Interface

0033 6 SPIF (SPI0CN.7) ESPI0 (EIE1.0) PSPI0
(EIP1.0)

SMBus
Interface 003B 7 SI (SMB0CN.3) ESMB0

(EIE1.1)
PSMB0
(EIP1.1)

ADC0 Window
Comparator 0043 8 AD0WINT

(ADC0CN.2)
EWADC0
(EIE1.2)

PWADC0
(EIP1.2)

Programmable
Counter Array 004B 9

CF (PCA0CN.7)
CCFn

(PCA0CN.n)
EPCA0 (EIE1.3) PPCA0

(EIP1.3)

Comparator 0
Falling Edge 0053 10 CP0FIF

(CPT0CN.4) ECP0F (EIE1.4) PCP0F
(EIP1.2)

Comparator 0
Rising Edge 005B 11 CP0RIF

(CPT0CN.5)
ECP0R
(EIE1.5)

PCP0R
(EIP1.5)

Comparator 1
Falling Edge 0063 12 CP1FIF

(CPT1CN.4) ECP1F (EIE1.6) PCP1F
(EIP1.6)

Comparator 1
Rising Edge 006B 13 CP1RIF

(CPT1CN.5)
ECP1R
(EIE1.7)

PCP1F
(EIP1.7)

Timer 3
Overflow 0073 14 TF3 (TMR3CN.7) ET3 (EIE2.0) PT3 (EIP2.0)

ADC0 End of
Conversion 007B 15 AD0INT

(ADC0CN.5)
EADC0
(EIE2.1)

PADC0
(EIP2.1)

Timer 4
Overflow 0083 16 TF4 (T4CON.7) ET4 (EIE2.2) PT4 (EIP2.2)

ADC1 End of
Conversion 008B 17 AD1INT

(ADC1CN.5)
EADC1
(EIE2.3)

PADC1
(EIP2.3)

External
Interrupt 6 0093 18 IE6 (PRT3IF.5) EX6 (EIE2.4) PX6 (EIP2.4)

External
Interrupt 7 009B 19 IE7 (PRT3IF.6) EX7 (EIE2.5) PX7 (EIP2.5)

UART1 00A3 20 RI1 (SCON1.0)
TI1 (SCON1.1) ES1 (EIE2.6) PS1 (EIP2.6)

External
Crystal OSC
Ready

00AB 21 XTLVLD
(OSCXCN.7) EXVLD (EIE2.7) PXVLD

(EIP2.7)

Table 11.1 Interrupt Summary

 Chapter 11 Interrupts 239

11.2 Interrupt Process
Once an interrupt has been received and accepted by the CPU, the
interrupt handling routine is activated as follows:

a) The CPU completes executing the current instruction

b) The CPU saves the Program Counter (PC) value by pushing
it on to the stack.

c) The PC is then loaded with the vector address of ISR

d) The ISR is executed.

The execution of ISR proceeds until the RETI (Return from Interrupt)
instruction is encountered. The RETI instruction informs the CPU that the
interrupt subroutine has finished. The top two bytes from the stack are
then popped and loaded into the Program Counter (PC). The CPU will
continue executing the instruction from this PC address, which is the
place where the execution of the main program was left off in order to
invoke the ISR. Some interrupt pending flags are automatically cleared
by the hardware when the CPU vectors to the ISR. This has an
advantage of preventing a further interrupt within an interrupt. However,
if the interrupt flag is not cleared by the hardware, then it is the
programmer’s responsibility to clear it, using some software means, upon
entering the ISR. If an interrupt pending flag remains set after the CPU
completes the RETI instruction, a new interrupt request will be generated
immediately and the CPU will re-enter the ISR after the completion of the
next instruction.

11.3 Interrupt Vectors
The Table 11.1 shows various interrupts sources and their associated
vector addresses. For example, the External Interrupt 1(/INT1) has a
vector address of 0013H and Timer 1 interrupt’s vector is at 001BH. The
vector address is the starting address of the ISR; this is the address
which CPU will load into PC when it encounters an interrupt.

The example below shows a template of how a timer 4 interrupt can be
used:

 240 Chapter 11 Interrupts

Example:
 CSEG AT 0
 LJMP MAIN

 ORG 0083H ; vector address of
 ; timer 4
 LJMP TIMER4INT

MYCODE SEGMENT CODE
 RSEG MYCODE ; switch to this code
 ; segment
 USING 0 ; use register bank 0

MAIN: . ; main program entry point
 .
 .

TIMER4INT: .
 . ; Timer 4 ISR Code
 .
 RETI ; Return to main program

If the ISR is small (8 bytes or less), there is no need to jump to a different
area in memory. One can use the memory space between the two
adjacent interrupt vectors to write the short ISR program.

11.4 External Interrupts

The external interrupt sources can be programmed to be level-activated
(low) or transition-activated (negative edge) on /INT0 or /INT1. These
two external interrupt sources are configured by bits IT0 (TCON.0) and
IT1 (TCON.2). IE0 (TCON.1) and IE1 (TCON.3) serve as the interrupt-
pending flag for the /INT0 and /INT1 external interrupts, respectively.

If a /INT0 or /INT1 external interrupt is configured as edge-sensitive, the
corresponding interrupt-pending flag is automatically cleared by
hardware when the CPU vectors to the ISR.

When configured as level sensitive, the interrupt-pending flag follows the
state of the external interrupt's input pin. The external interrupt source
must hold the input active until the interrupt request is recognized. It

 Chapter 11 Interrupts 241

must then deactivate the interrupt request before execution of the ISR
completes otherwise another interrupt request will be generated.

The other 2 external interrupts (External Interrupts 6 & 7) are edge-
sensitive inputs and can be configured to trigger on a positive or negative
edge. The interrupt-pending flags and configuration bits for these
interrupts are in the Port 3 Interrupt Flag Register (Table 11.8).

11.5 Interrupt Latency

Interrupt latency is the time lapsed from when an interrupt is asserted to
when the CPU begins the ISR execution. It depends very much on the
state of the CPU when the interrupt occurs. The fastest response time is
5 system clock cycles, 1 clock cycle to detect the interrupt and 4 clock
cycles to complete the LCALL to the ISR.

If an interrupt is pending when RETI is executed, then a single instruction
needs to be executed before an LCALL is made to service the pending
interrupt. Therefore the maximum response time will be 18 system clock
cycles; example - 1 clock cycle to detect the interrupt, 5 clock cycles to
execute the RETI, 8 clock cycles to complete the DIV instruction and 4
clock cycles to execute the LCALL to the ISR.

11.6 Interrupt SFRs
The SFRs used to enable the interrupt sources and set their priority level
are described in this section. Please refer to the appropriate chapter for
information regarding valid interrupt conditions for the peripheral and the
behavior of its interrupt-pending flag(s).

 242 Chapter 11 Interrupts

IE: Interrupt Enable

Bit Symbol Description

7 EA
Enable All Interrupts
0: Disable all interrupt sources.
1: Enable each interrupt according to its
 individual mask setting.

6 IEGF0
General Purpose Flag 0
This is a general purpose flag for use under
software control.

5 ET2
Enable Timer 2 Interrupt
0: Disable Timer 2 Interrupt.
1: Enable interrupt requests generated by TF2
 (T2CON.7).

4 ES0
Enable UART0 Interrupt
0: Disable UART0 Interrupt.
1: Enable UART0 Interrupt.

3 ET1
Enable Timer 1 Interrupt
0: Disable Timer 1 Interrupt.
1: Enable interrupt requests generated by TF1
 (TCON.7).

2 EX1
Enable External Interrupt 1
0: Disable external interrupt 1.
1: Enable interrupt request generated by the
 /INT1 pin.

1 ET0
Enable Timer 0 Interrupt
0: Disable Timer 0 Interrupt.
1: Enable interrupt requests generated by TF0
 (TCON.5).

0 EX0
Enable External Interrupt 0
0: Disable external interrupt 0.
1: Enable interrupt request generated by the
 /INT0 pin.

Table 11.2 IE (Interrupt Enable)

 Chapter 11 Interrupts 243

IP: Interrupt Priority

Bit Symbol Description
7-6 - UNUSED. Read=11, Write=don’t care

5 PT2
Timer 2 Interrupt Priority Control
0: Timer 2 interrupt priority determined by default
 priority order.
1: Timer 2 interrupts set to high priority level.

4 PS0
UART0 Interrupt Priority Control
0: UART0 interrupt priority determined by default
 priority order.
1: UART0 interrupts set to high priority level.

3 PT1
Timer 1 Interrupt Priority Control
0: Timer 1 interrupt priority determined by default
 priority order.
1: Timer 1 interrupts set to high priority level.

2 PX1

External Interrupt 1 Priority Control
0: External Interrupt 1 interrupt priority determined
 by default priority order.
1: External Interrupt 1 interrupts set to high priority
 level.

1 PT0
Timer 0 Interrupt Priority Control
0: Timer 0 interrupt priority determined by default
 priority order.
1: Timer 0 interrupts set to high priority level.

0 PX0
External Interrupt 0 Priority Control
0: External Interrupt 0 priority determined by
 default priority order.
1: External Interrupt 0 set to high priority level.

Table 11.3 IP (Interrupt Priority)

 244 Chapter 11 Interrupts

EIE1: Extended Interrupt Enable 1

Bit Symbol Description

7 ECP1R
Enable Comparator1 (CP1) Rising Edge Interrupt
0: Disable CP1 Rising Edge interrupt.
1: Enable interrupt requests generated by
 CP1RIF (CPT1CN.5).

6 ECP1F
Enable Comparator1 (CP1) Falling Edge Interrupt
0: Disable CP1 Falling Edge interrupt.
1: Enable interrupt requests generated by CP1FIF
 (CPT1CN.4).

5 ECP0R
Enable Comparator0 (CP0) Rising Edge Interrupt
0: Disable CP0 Rising Edge interrupt.
1: Enable interrupt requests generated by
 CP0RIF (CPT0CN.5).

4 ECP0F
Enable Comparator0 (CP0) Falling Edge Interrupt
0: Disable CP0 Falling Edge interrupt.
1: Enable interrupt requests generated by CP0FIF
 (CPT0CN.4).

3 EPCA0
Enable Programmable Counter Array (PCA0)
Interrupt
0: Disable all PCA0 interrupts.
1: Enable interrupt requests generated by PCA0.

2 EWADC0
Enable Window Comparison ADC0 Interrupt
0: Disable ADC0 Window Comparison Interrupt.
1: Enable Interrupt request generated by ADC0
 Window Comparisons.

1 ESMB0

Enable System Management Bus (SMBus0)
Interrupt
0: Disable all SMBus interrupts.
1: Enable interrupt requests generated by SI
 (SMB0CN.3).

0 ESPI0

Enable Serial Peripheral Interface (SPI0)
Interrupt
0: Disable all SPI0 interrupts.
1: Enable interrupt requests generated by SPIF
 (SPI0CN.7).

Table 11.4 EIE1 (Extended Interrupt Enable 1)

 Chapter 11 Interrupts 245

EIE2: Extended Interrupt Enable 2

Bit Symbol Description

7 EXVLD

Enable External Clock Source Valid (XTLVLD)
Interrupt
0: Disable XTLVLD interrupt.
1: Enable interrupt requests generated by XTLVLD
 (OXCXCN.7)

6 ES1
Enable UART1 Interrupt
0: Disable UART1 Interrupt.
1: Enable UART1 Interrupt.

5 EX7
Enable External Interrupt 7
0: Disable external interrupt 7.
1: Enable interrupt request generated by the
 External Interrupt 7 input pin.

4 EX6
Enable External Interrupt 6
0: Disable external interrupt 6.
1: Enable interrupt request generated by the
 External Interrupt 6 input pin.

3 EADC1
Enable ADC1 End of Conversion Interrupt
0: Disable ADC1 End of Conversion interrupt.
1: Enable interrupt requests generated by the
 ADC1 End of Conversion Interrupt.

2 ET4
Enable Timer 4 Interrupt
0: Disable Timer 4 Interrupt.
1: Enable interrupt requests generated by TF4
 (T4CON.7).

1 EADC0
Enable ADC0 End of Conversion Interrupt
0: Disable ADC0 End of Conversion interrupt.
1: Enable interrupt requests generated by the
 ADC0 End of Conversion Interrupt.

0 ET3
Enable Timer 3 Interrupt
0: Disable Timer 3 Interrupt.
1: Enable interrupt requests generated by TF3
 (TMR3CN.7).

Table 11.5 EIE2 (Extended Interrupt Enable 2)

 246 Chapter 11 Interrupts

EIP1: Extended Interrupt Priority 1

Bit Symbol Description

7 PCP1R
Comparator1 (CP1) Rising Interrupt Priority
Control
0: CP1 Rising interrupt set to low priority level.
1: CP1 Rising interrupt set to high priority level.

6 PCP1F
Comparator1 (CP1) Falling Interrupt Priority
Control
0: CP1 Falling interrupt set to low priority level.
1: CP1 Falling interrupt set to high priority level.

5 PCP0R
Comparator0 (CP0) Rising Interrupt Priority
Control
0: CP0 Rising interrupt set to low priority level.
1: CP0 Rising interrupt set to high priority level.

4 PCP0F
Comparator0 (CP0) Falling Interrupt Priority
Control
0: CP0 Falling interrupt set to low priority level.
1: CP0 Falling interrupt set to high priority level.

3 PPCA0
Programmable Counter Array (PCA0) Interrupt
Priority Control
0: PCA0 interrupt set to low priority level.
1: PCA0 interrupt set to high priority level.

2 PWADC0
ADC0 Window Comparator Interrupt Priority
Control
0: ADC0 Window interrupt set to low priority level.
1: ADC0 Window interrupt set to high priority level.

1 PSMB0
System Management Bus (SMBus0) Interrupt
Priority Control
0: SMBus interrupt set to low priority level.
1: SMBus interrupt set to high priority level.

0 PSPI0
Serial Peripheral Interface (SPI0) Interrupt
Priority Control
0: SPI0 interrupt set to low priority level.
1: SPI0 interrupt set to high priority level.

Table 11.6 EIP1 (Extended Interrupt Priority 1)

 Chapter 11 Interrupts 247

EIP2: Extended Interrupt Priority 2

Bit Symbol Description

7 PXVLD
External Clock Source Valid (XTLVLD) Interrupt
Priority Control
0: XTLVLD interrupt set to low priority level.
1: XTLVLD interrupt set to high priority level.

6 EP1
UART1 Interrupt Priority Control
0: UART1 interrupt set to low priority level.
1: UART1 interrupt set to high priority level.

5 PX7
External Interrupt 7 Priority Control
0: External Interrupt 7 set to low priority level.
1: External Interrupt 7 set to high priority level.

4 PX6
External Interrupt 6 Priority Control
0: External Interrupt 6 set to low priority level.
1: External Interrupt 6 set to high priority level.

3 PADC1

ADC1 End of Conversion Interrupt Priority
Control
0: ADC1 End of Conversion interrupt set to low
 priority level.
1: ADC1 End of Conversion interrupt set to high
 priority level.

2 PT4
Timer 4 Interrupt Priority Control
0: Timer 4 interrupt set to low priority level.
1: Timer 4 interrupt set to high priority level.

1 PADC0

ADC0 End of Conversion Interrupt Priority
Control
0: ADC0 End of Conversion interrupt set to low
 priority level.
1: ADC0 End of Conversion interrupt set to high
 priority level.

0 PT3
Timer 3 Interrupt Priority Control
0: Timer 3 interrupt set to low priority level.
1: Timer 3 interrupt set to high priority level.

Table 11.7 EIP2 (Extended Interrupt Priority 2)

 248 Chapter 11 Interrupts

P3IF: Port 3 Interrupt Flag Register

Bit Symbol Description

7 IE7

External Interrupt 7 Pending Flag
0: No falling edge has been detected on P3.7
 since this bit was last cleared.
1: This flag is set by hardware when a falling edge
 on P3.7 is detected.

6 IE6

External Interrupt 6 Pending Flag
0: No falling edge has been detected on P3.6
 since this bit was last cleared.
1: This flag is set by hardware when a falling edge
 on P3.6 is detected.

5-4 - UNUSED. Read = 00, Write = don’t care

3 IE7CF

External Interrupt 7 Edge Configuration
0: External Interrupt 7 triggered by a falling edge
 on the IE7 input.
1: External Interrupt 7 triggered by a rising edge
 on the IE7 input.

2 IE6CF

External Interrupt 6 Edge Configuration
0: External Interrupt 6 triggered by a falling edge
 on the IE6 input.
1: External Interrupt 6 triggered by a rising edge
 on the IE6 input.

1-0 - UNUSED. Read = 00, Write = don’t care

Table 11.8 P3IF (Port 3 Interrupt Flag Register)

 Chapter 11 Interrupts 249

11.7 Tutorial Questions

1. What step or steps should be taken to prevent the CPU from
entering into the nested interrupt while serving the current ISR?

2. What is the vector address of UART0? How is it possible to
recognize the interrupt source when this vector address is
available for both the transmit interrupt as well as receive
interrupt?

3. What is the next available memory where the user can write his or
her program without interfering with the interrupt vector? Give an
example of program code.

4. Write a program using Timer 0 and interrupts to create a 5 kHz
square wave on P1.7

5. List the events that occur when an interrupt becomes active.

6. How to program the External Interrupt 7 to be of higher priority
than External Interrupt 6?

Index

Absolute Addressing, 42
Absolute Segment, 79
AD0BUSY bit, 187
AD0INT, 193
ADC0 SFRs, 195
ADC0CF:
 ADC0 Configuration Register, 197
ADC0CN:
 ADC0 Control Register, 198
ADC1 SFRs, 206
ADC1CF:
 ADC1 Configuration Register, 206
ADC1CN:
 ADC1 Control Register, 207
Address Control, 72
Address Latch Enable (ALE), 3
Addressing Modes, 40
AMUX0 Channel Selection, 195
AMUX1, 200
AMX0CF:
 AMUX0 Configuration Register, 196
AMX0SL:
 AMUX0 Channel Selection Register, 195
AMX1SL:
 AMUX1 Channel Select Register, 206
Analog Measurement using Interrupts, 194
Analog Multiplexer 0 (AMUX0), 186
Arithmetic Operations, 44
Asynchronous Serial Data Format, 216
Auxiliary Carry Flag (AC), 13

B register, 14
Baud Rate Generation, 168
Baud Rate, 169, 222
Bit-addressable RAM, 10
Bit-valued Data, 113
Bitwise Logical Operators, 116
Block Diagram:
 ADC0, 186
 ADC1, 199
 DAC0 and DAC1, 208
 Timer 3, 166
 UART, 219
Boolean Variable Instructions, 57

Carry Flag (CY), 12
Changing the Clock Speed, 140
CKCON: Clock Control Register, 170
Compound Operators, 117
Configuring the Crossbar, 136

DAC Output Scaling, 210
DAC Output Scheduling, 209
DAC0 SFRs, 212
DAC0CN: DAC0 Control Register, 212
DAC1 SFRs, 213
DAC1CN:
 DAC1 Control Register, 213
DACs (12-Bit), 208
Data Memory Organization, 6
Data Pointer Register (DPTR), 15
Data Transfer Instructions, 52
Data Types, 129
Data Word Conversion Map (12-bit), 188
Data Word Conversion Map (8-bit), 201
Digital Crossbar, 91
Direct Addressing 10, 11, 41

EIE1 (Extended Interrupt Enable 1), 244
EIE2 (Extended Interrupt Enable 2), 245
EIP1 (Extended Interrupt Priority 1), 246
EIP2 (Extended Interrupt Priority 2), 247
END directive, 73
Even Parity Flag, 14
Expansion Board:
 Circuit Diagram, 154
 Functional Block diagram, 132
 Physical Component Layout, 155
 Pictures, 153
External Interrupts, 240
External memory, 3

Functions, 122

General Purpose RAM, 10
GPIO, 93

IE (Interrupt Enable), 242
Immediate Addressing, 10, 15
Immediate Constant Addressing, 42
Indirect Addressing, 10, 41
Instruction Types, 43
Interrupt:
 Functions, 123
 Handler, 236
 Latency, 241
 Organization, 236
 Priority Level Structure, 237
 Processing, 239
 Service Routines, 151
 SFRs, 241
 Summary, 238

252 Index

Interrupt: (Contd.)
 Vectors, 239
IP (Interrupt Priority), 243

Logical Operations, 48
Logical Operators, 116
Long Addressing, 43

Memory Initialization, 75

ORG directive, 72
OSCICN:
 Internal Oscillator Control Register, 86
Oscillator Programming Registers, 86
OSCXCN:
 External Oscillator Control Register, 87
Overflow Flag (OV), 13

P0 (Port0 Data Register), 99
P0MDOUT (Port0 Output Mode Register),

99
P1: Port1 Data Register, 100
P1MDIN:
 Port1 Input Mode Register, 100
P1MDOUT:
 Port1 Output Mode Register, 100
P2: Port2 Data Register, 101
P2MDOUT:
 Port2 Output Mode Register, 101
P3: Port3 Data Register, 102
P3IF:
 Port 3 Interrupt Flag Register, 103
P3IF:
 Port 3 Interrupt Flag Register, 248
P3MDOUT:
 Port3 Output Mode Register, 102
P74OUT:
 Port 7-4 Output Mode Register, 104
PCON: Power Control Register, 228
PGA0, 186
PGA1, 200
Pointers, 127
Port Configuration, 136
Program Branching Instructions, 62
Program Status Word, 12
Programming:
 ADC0, 189
 ADC1, 201
 Memory Models, 111
 DACs, 210
 Timer, 160
 UARTs, 219

Random Access Memory, 7
Reading Analog Signals, 151
Register Addressing, 40

Register Bank Select Bits, 13
Register Banks, 11, 126
Relational Operators, 115
Relative Addressing, 42
Reset (RST), 4

SCON0: UART0 Control Register, 227
SCON1: UART1 Control Register, 227
SEGMENT directive, 78
Software Delays, 135, 137
Special Function Registers, 9, 11, 114, 162
Stack Pointer, 14
Starting:
 A Project, 134
 ADC0 Conversions, 187
 ADC1 Conversions, 200
Symbol Definition, 74
Synchronous Serial Data Format, 217
System Clock Oscillator, 5

T2CON:
 Timer 2 Control Register, 174
T4CON:
 Timer 4 Control Register, 177
TCON:
 Timer Control Register, 172
Timer 0:
 8 Bit Auto-Reload Mode, 163
 Two 8-bit Timers Mode, 164
Timer 2, 161
Timer 2:
 C Programming Example, 178
 16 Bit Capture Mode, 167
 16-Bit Auto-Reload Mode (Mode 1), 165
 Baud Rate Generation Mode, 168
 Mode Configuration, 173
 SFRs, 173
Timer 3, 160, 166
Timer 3:
 SFRs, 175
Timer 4, 161, 165
Timer 4:
 Baud Rate Generation Mode, 169
 SFRs, 176
 Mode Configuration, 176
Timer Modes, 172
Timer SFRs, 161
Timers 0 and 1 SFRs, 171
Timers 0 and 1, 160
Timers and Operating Modes, 159
TMOD: Timer Mode Register, 171
TMR3CN: Timer 3 Control Register, 175

UART:
 Interrupt Flags, 225
 Operation Modes, 220

 Index 253

UART: (Contd.) WDTCN:
Watchdog Timer Control Register, 89 SFRs, 227

 Fixed Baud Rate (Mode 2), 224
 Variable Baud Rate (Mode 1), 222 XBR0:
 Variable Baud Rate (Mode 3), 225 Crossbar Register 0, 96
UART0, 217 XBR1:
UART1, 217 Crossbar Register 1, 97
USING directive, 73 XBR2:
 Crossbar Register 2, 98
Watchdog Timer, 135

