Budapest University of Technology and Economics
Faculty of Transportation Engineering and Vehicle Engineering
Department of Control for Transportation and Vehicle Systems

IC TECHNOLOGY

Lecture 2.

IC - Integrated Circuit - Technology

- Integrated Circuit: An integrated circuit (IC, a chip, or a microchip) is a set of electronic circuits on one small flat piece (or "chip") of semiconductor material, normally silicon.
- First IC had created by Jack Kilby - researcher of Texas Instruments - in 1958.
- Basic elements of ICs:
- resistor,
- capacitor,
- diode,
- transistor.

IC - Integrated Circuit - Technology

- First silicon IC: Robert Noyce, 1961

IC - Integrated Circuit - Technology

- Digital integrated circuits can contain anywhere from one to billions of logic gates, flip-flops, multiplexers, and other circuits in a few square millimeters.
- Planar process (several times in a row), from slices of a silicon single crystal rod, called wafer:
- creation of a layer,
- lithography,
- doping.

IC - Integrated Circuit - Technology

- Planar means, that the production of ICs take place in planar layout.
- Creation of a layer: chemical or physical methods in order to create a contigous layer on the wafer:
- oxidation, epitaxial growth, chemical vapor deposition, physical vapor deposition,
- SiO_{2} layer: masks and insulates

IC - Integrated Circuit - Technology

- Litography process: the purpose is to create the pattern,
- Steps of the litography process:
- applying fotoresist material to the wafer,
- pattern mapping,:
- the wafer is illuminated through a mask belonging to the given layer,
- where light penetrates the material, it will polymerize, so it will be resistant to some solvents.
- oxide milling.

IC - Integrated Circuit - Technology

after developement

IC - Integrated Circuit - Technology

after oxid milling

IC - Integrated Circuit - Technology

- Doping: with n or p type materials:
- diffusion and ion implantation

Doping

source: www.mems.hu

IC - Integrated Circuit - Technology

- MOS FET IC, eg: construction

IC - Integrated Circuit - Technology

IC - Integrated Circuit - Technology

- CMOS type inverter:
- p and n type layers by masks - these are the layers of the source and the drain of the transistors, with aluminum outlet,
- gate of the transistor is made by polycrystalline silicon, beneath a thin layer of SiO_{2}, above it is also a thicker insulating layer.

IC - Integrated Circuit - Technology

Budapest University of Technology and Economics

Faculty of Transportation Engineering and Vehicle Engineering
Department of Control for Transportation and Vehicle Systems
source: Scotten W. Jones, Introduction to Integrated CircuitTechnology, Third Edition, 2004

IC - Integrated Circuit - Technology

- IC enclosures:
- according to assembling technology:
- through-hole,
- surface-mounted:
- dual,
- quad,
- ball grid array,
- contactless,
- according to the material used:
- plastic,

- ceramic,
- metal and power.

IC - Integrated Circuit - Technology

Budapest University of Technology and Economics

SOP (Small Outline Package)

DIP (Dual In Line)

SSOP (Small Schrink Outline Package)
PLCC (Plastic Leaded Chip Carrier)

IC - Integrated Circuit - Technology

Budapest University of Technology and Economics
Faculty of Transportation Engineering and Vehicle Engineering $\begin{gathered}\text { Department of Control for Transportation and Vehicle Systems }\end{gathered}$

- Generation of ICs:
- ICs - number of transistors:
- SSI (Small-Scale Integration): 10x
- MSI (Medium-Scale Integration): 100x
- LSI (Large-Scale Integration): 10000x
- VLSI (Very Large-Scale Integration): 100000x
- ULSI (Ultra Large-Scale Integration): 1000000x
- SoC (System on Chip): a „whole computer" integrated in a single IC. (E.g.: motherboard of smart phones)
- Intel 4004 (1971): 2300
- Intel Core i7 (2008): 781 million
- Intel Core i9 (2017): about 7 billion
- Line width in the chip:
- Intel 4004 (1971): $10 \mu \mathrm{~m}$
- Intel Core i7 (2008): 45 nm
- Intel Core i9 (2017): 10 nm

Memories

- Memories:
- Volatile:
- RAM (Random - Access Memory):
- Dynamic RAM,
- Static RAM.
- Non - Volatile:
- ROM (Read-Only Memory),
- PROM (Programmable ROM),
- EPROM (Erasable Programmable ROM),
- EEPROM (Electrically Erasable Programmable ROM),
- Flash.

Memories

- RAM:

- Dynamic RAM:
- one cell consists of one transistor and one capacitor,
- it has to refresh time to time, because the capacitor is discharged due to the trickle current,
- slow, smaller size, cheap.
- Static RAM:
- one cell consists of more transistors (flip-flop),
- it stores the data for any length of time, if there is a power supply,
- fast, small energy consumption, expensive.

Memories

- ROM

- Programmed by the manufacturer, the user can only read it.
- PROM
- User can program it once, than he can only read it.

Memories

- EPROM

- Cleared by UV light, programmed by special equipment.
- EEPROM
- Programmed and cleared by special equipment.
- Flash
> - Type of EEPROM, programmed and cleared by the computer.

source: By Author : Poil 01:10, 17 Apr 2005 (UTC) - Author personnal collection., CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=97658

LOGICAL NETWORKS

Lecture 2.

Boolean Algebra

- Logical connectives:

$$
\begin{array}{lll}
0 \cdot 0=0 \cdot 1=1 \cdot 0=0 ; & 1 \cdot 1=1 \\
0+1=1+0=1+1=1 ; & 0+0=0 \\
\overline{0}=1 ; \quad \overline{1}=0 ; \quad \overline{0}=0 ; \quad \overline{1}=1 &
\end{array}
$$

Boolean Algebra

- commutativity:

$$
\begin{aligned}
A+B & =B+A \\
A \cdot B & =B \cdot A
\end{aligned}
$$

- associavity:

$$
\begin{aligned}
A+B+C & =A+(B+C) \\
A \cdot B \cdot C & =A \cdot(B \cdot C)
\end{aligned}
$$

- absorption:

$$
\begin{aligned}
& A+A \cdot B+A \cdot B \cdot C+\cdots=A \\
& A \cdot A+B \cdot A+B+C \cdots=A
\end{aligned}
$$

- distibutivity:

$$
\begin{gathered}
A \cdot(B+C)=A \cdot B+A \cdot C \\
A+(B \cdot C)=(A+B) \cdot(A+C) \\
A \cdot A+A \cdot C+B \cdot A+B \cdot C=A \cdot(1+C+B)+B C
\end{gathered}
$$

- De Morgan's laws:

$$
\begin{aligned}
& \overline{A+B}=\bar{A} \cdot \bar{B} \\
& \overline{A \cdot B}=\bar{A}+\bar{B}
\end{aligned}
$$

Realization of Logical Networks

- logical gates:
- basic functions
- AND, OR, NOT
- complex functions
- NAND, NOR, XOR (exclusive OR), XNOR (exclusive NOR)
- relay
- computers
- pneumatic networks

Realization of Logical Networks

Realization of Logical Networks

Sequential Networks

- sequential networks: a network, whose output depends on the actual inputs and past inputs (the order of the inputs) - a network with memory

Sequential Networks

- realization with flip-flops (finite state machine):
- flip flop: a circuit, that has two stable states to store a one bit information, it is a bistable multivibrator, can be synchronous (clock controlled) or asynchronous (event driven),
- SR flip-flop:

Sequential Networks

- JK flip-flop:

RG | J | y |
| :--- | :--- |
| C | |
| K | \bar{y} |

- T flip-flop:

- D flip-flop:
- DG flip-flop:

Sequential Networks

- timer, eg.:

Sequential Networks

- shift register, eg.:

source: https://www.digitalelectronicsdeeds.com/demos/demopage_seq.html

Sequential Networks

- binary up counter, eg.:

Sequential Networks

- more examples:
- https:/ /www.allaboutcircuits.com/textbook/digital/chpt-11/finite-state-machines/
- https:/ / www.youtube.com/watch?v=dV8PTOZ2-gQ
- https:/ /www.youtube.com/watch?v=kNlGHmsfp40
- https://www.youtube.com/watch?v=YW- GkUguMM
- https:/ /www.youtube.com/watch?v=F1OC5e7Tn o

End of Lecture 2.

Thank you for your attention!

