

ENCODING, NUMBER REPRESENTATIONS IN COMPUTING, PART 1.

Lecture 3.

Budapest University of Technology and Economics

Faculty of Transportation Engineering and Vehicle Engineering Department of Control for Transportation and Vehicle Systems

- Generally used numeral systems:
 - binary,/base-2, e.g: 00011101
 - each digit is referred to as a bit,
 - used internally by almost all modern computers and computer-based devices,
 - it is a straightforward implementation in digital electronic circuitry using logical gates,
 - decimal/base10/denary, e.g: 156
 - most widely used,
 - fractional part can be:
 - finite,
 - infinite (or non terminating)
 - repeating sequence of digits
 - irrational numbers have infinite (non terminating) decimal representations,
 - irrational number is a real number, that cannot be expressed as a ratio of integers, e.g. π =3.14159.....
 - if we would like to use it for computing, we have to convert it division/multiplication algorhitms

Encoding, Number Representation in Computing

Budapest University of Technology and Economics

Faculty of Transportation Engineering and Vehicle Engineering

- hexadecimal/base-16/hex, e.g: 1BE45A
 - it uses sixteen distinct symbols 0...9,A...F,
 - widely used by computer system designers and programmers
- General form of numbers:
 - $A \stackrel{\text{\tiny def}}{=} (\pm a_{-m}a_{-m+1}a_{-m+2} \dots a_{-1}a_0, a_1a_2 \dots a_n)$, where
 - $a_{-m}, a_{-m+1}, \dots, a_{-1}a_0, a_1, \dots, a_n$ are the values of the digits in each local value
 - if the base of the numeral system is r (radix), the number A can be expressed as:
 - $A = \pm \sum_{i=-m}^{n} a_i r^{-i}$, where $0 \le a_i < r$, for $\forall i$
 - e.g: A=7346
 - $B_{10} = 7346_{10} = 7 * 10^3 + 3 * 10^2 + 4 * 10^1 + 6 * 10^0 = 7000 + 300 + 40 + 6 = 7346_{10}$,
 - $B_8 = 7346_8 = 7 * 8^3 + 3 * 8^2 + 4 * 8^1 + 6 * 8^0 = 3584 + 192 + 32 + 6 = 3814_{10}$,

Budapest University of Technology and Economics Faculty of Transportation Engineering and Vehicle Engineering

Department of Control for Transportation and Vehicle Systems

- fixed-point representation:
 - $A = \pm a_{-m}a_{-m+1}a_{-m+2} \dots a_{-1}a_0, a_1a_2 \dots a_n,$
 - where the integer part of the number is located to the left from the radix point, and the fractional part is located to the right from the radix point,
 - it is generally used to represent numbers with less digits,
- floating-point representation:
 - $A = \pm m * r^{\pm k}$, where $r^{-1} \le |m| < r^0$,
 - m= mantissa (significand),
 - k=characteristic,
 - r=radix (base)
 - e.g: -0.999*10⁺⁴¹, r=10
 - every number can be represented in this form!
 - nowdays, r is equal to 2 or 16 in modern computers!

Budapest University of Technology and Economics Faculty of Transportation Engineering and Vehicle Engineering

Department of Control for Transportation and Vehicle Systems

- Encoding: it is needed to convert an information into an appropriate form,
 - appropriate form: favorable form to data processing,
- Generally used encoding systems:
 - for numbers:
 - pure binary code,
 - complement code,
 - inverse binary code,
 - binary-coded decimal BCD,
 - Stibitz code,
 - Gray code,
 - etc...

Budapest University of Technology and Economics Faculty of Transportation Engineering and Vehicle Engineering

Department of Control for Transportation and Vehicle Systems

• for characters:

• telex-code:

27/09/2018

- started in the 1930's, it was a point-to point teleprinter system, it was last used in the United Kingdom in 2008
- used 5 digits, worked with number-character changing characters

```
e.g. message: 3/x + 2 expression

1. number changer 11011

2. 3

3. /-slash = number 11016

4. character changer 1111

5. x \rightarrow letter 1111

6. humber changer 11016

6. humber changer 11016

7. + 10001

8. 2 10011
```

Telestar 12x source: <u>http://www.cr</u> yptomuseum.c om/telex/telef unken/telestar /index.htm

Budapest University of Technology and Economics

Faculty of Transportation Engineering and Vehicle Engineering

Department of Control for Transportation and Vehicle Systems

128

129

130

131

132

Ç

ü

é

â

ä

- ASCII code:
 - American Standard Code for International Interchange,
 - earliest version: 7 digits + 1 specified bit,
 - 2⁷=128 code words, 7. digit: parity bit, contained numbers from 0 to 9, lower case letters from a to z, uppercase letters from A to Z, punctuation sysmbols, control codes, space...

Dec	: HxOct Char	Dec	Hx	Oct	Html	Chr	Dec	Hx	Oct	Html	Chr	Dec	Hx	Oct	Html Ch	<u>ır</u>
0	0 000 NUL (null)	32	20	040	⊛# 32;	Space	64	40	100	«#64;	0	96	60	140	`	2
1	l 001 <mark>SOH</mark> (start of heading)	33	21	041	&# 33;	1.00	65	41	101	A	A	97	61	141	⊛#97;	a
2	2 002 STX (start of text)	34	22	042	"		66	42	102	B	в	98	62	142	& #98;	b
3	3 003 ETX (end of text)	35	23	043	∝# 35;	#	67	43	103	C	С	99	63	143	∝#99;	С
4	4 004 EOT (end of transmission)	36	24	044	&#36;</td><td>ę –</td><td>68</td><td><math>^{44}</math></td><td>104</td><td>&#68;</td><td>D</td><td>100</td><td>64</td><td>144</td><td>∝#100;</td><td>d</td></tr><tr><td>F</td><td>E ODE FNO (complexit)</td><td>0.0</td><td>25</td><td>0.45</td><td>r#37•</td><td>2-</td><td>60</td><td>лс</td><td>105</td><td>c#60•</td><td>F</td><td>101</td><td>65</td><td>1.45</td><td>c#101•</td><td>e.</td></tr></tbody></table>											

192

193

194

195

196

L.

—

208

209

210

211

212

224

225

226

227

228

ß

Σ

176

177

178

179

180 -

• Extended ASCII:

- 2⁸=256 code words, ASCII+extensions,
- ISO 8859-1: Latin 1. for Western European Languages, ANSI
- ISO 8859-2: Latin 2. for Eastern European Languages,
- ISO 8859-3 for Cyrillic Languages

source: http://www.asciitable.com/

240

242 ≥

243

244

source: http://www.asciitable.com/

241 ±

_≤

- it is a compatible subset of ISO 8859-1 with extra characters,
- this is the standard character encoding of Western European language versions of Microsoft Windows, including English versions

144

145

146

147

148

É

æ

Æ

ô

Ö

160

161 <u>í</u>

162 <u>ó</u>

163 **ú**

164 <u>ñ</u>

Budapest	University	of	Technology	r and	Economics

Faculty of Transportation Engineering and Vehicle Engineering
 Department of Control for Transportation and Vehicle Systems

- UNICODE ISO/IEC 104646:
 - most recent version: Unicode 11.0, contains 137439 characters, covering 146 modern and historic scripts ©
 - 16 digits in 17 plains, in every plan 65535 code words,
 - 0. plain: Basic Multilingual Plane (Latin-1),
 - 1. plain. Supplementary Multilingual Plane,
 - 2. plain: Supplementary Ideographic Plane,
 - 3...13. plains: unassigned,
 - 14. plain: Supplementary Special Purpose Plane,
 - 15, 16. plains: Supplementary Private Use Area
 - 17*2¹⁶=1114112 pieses of characters (possibility)

2		걢	겂 AC73	것	겓	겢	겳	곃	곓 ***	곣	곳
7		걤	건	겄	겔	겤	겴	계	곔	긘	곴
21		걥	걵	겅	겕	겥	겵	계	곕	곥	균
깆		걦	걶	겆	겖	겦	겶	곆	곖	고	곶
긳		 걧	건	겇	겗	겧	겷	곇	곗	괻	곳
<u>ک</u>		걨	겉	겈	겘	겨	겸	곈	곘	골	곸
1000	0 10	10	AC78		AC98	ACA8	ACB8		ACD8	ACES	ACF8

• etc...

Encoding, Number Representation in Computing

Budapest University of Technology and Economics

Faculty of Transportation Engineering and Vehicle Engineering Department of Control for Transportation and Vehicle Systems

- for images:
 - BMP,
 - JPEG,
 - etc...

a	b	COL	R	G	В	HUE	н	s	٧	a	b	COL	R	G	в	HUE	н	s	٧
0.0	0.0		255	0	0		0	1.00	1.00	0.9	0.9		136	232	232		180	0.41	0.91
0.0	0.0		255	0	0		0	1.00	1.00	1.2	0.9		139	158	214		225	0.35	0.84
0.0	0.0		255	0	0		0	1.00	1.00	1.5	0.9		150	138	197		252	0.30	0.77
0.3	0.0		255	48	48		0	0.81	1.00	1.8	0.9		157	135	180		270	0.25	0.70
0.3	0.0		255	48	48		0	0.81	1.00	0.0	1.2		238	134	134		0	0.44	0.93
0.6	0.0		255	87	87		0	0.66	1.00	0.3	1.2		235	210	135		45	0.42	0.92
0.9	0.0		255	118	118		0	0.54	1.00	0.6	1.2		182	227	137		90	0.39	0.89
1.2	0.0		238	134	134		0	0.44	0.93	0.9	1.2		139	214	158		135	0.35	0.84
1.5	0.0		214	139	139		0	0.35	0.84	0.9	1.2		139	214	158		135	0.35	0.84
1.5	0.0		214	139	139		0	0.35	0.84	1.2	1.2		139	200	200		180	0.31	0.79
1.8	0.0		193	138	138		0	0.29	0.76	1.5	1.2		136	156	185		216	0.26	0.73
1.8	0.0		193	138	138		0	0.29	0.76	1.8	1.2		132	132	170		240	0.22	0.67
0.0	0.3		255	48	48		0	0.81	1.00	0.0	1.5		214	139	139		0	0.35	0.84
0.3	0.3		65	255	255		180	0.75	1.00	0.3	1.5		212	183	139		36	0.35	0.83
0.3	0.3		65	255	255		180	0.75	1.00	0.6	1.5		194	206	139		71	0.33	0.81
0.6	0.3		175	95	255		270	0.63	1.00	0.9	1.5		150	197	138		108	0.30	0.77
0.9	0.3		255	123	255		300	0.52	1.00	1.2	1.5		136	185	156		144	0.26	0.73
1.2	0.3		235	135	210		315	0.42	0.92	1.5	1.5		133	173	173		180	0.23	0.68
1.5	0.3		212	139	183		324	0.35	0.83	1.8	1.5		129	144	160		210	0.20	0.63
1.8	0.3		192	138	165		330	0.28	0.75	0.0	1.8		193	138	138		0	0.29	0.76
0.0	0.6		255	87	87		0	0.66	1.00	0.3	1.8		192	165	138		30	0.28	0.75
0.3	0.6		175	255	95		90	0.63	1.00	0.6	1.8		187	187	137		60	0.27	0.73
0.6	0.6		113	255	255		180	0.56	1.00	0.9	1.8		157	180	135		90	0.25	0.70
0.9	0.6		131	131	248		240	0.47	0.97	1.2	1.8		132	170	132		120	0.22	0.67
1.2	0.6		182	137	227		270	0.39	0.89	1.2	1.8		132	170	132		120	0.22	0.67
1.5	0.6		193	139	206		288	0.33	0.81	1.5	1.8		129	160	144		150	0.20	0.63
1.8	0.6		187	137	187		300	0.27	0.73	1.8	1.8		124	149	149		180	0.17	0.59
0.0	0.9		255	118	118		0	0.54	1.00										
0.3	0.9		255	255	123		60	0.52	1.00										
0.6	0.9		131	248	131		120	0.47	0.97										
0.6	0.9		131	248	131		120	0.47	0.97										

source:

http://mkweb.bcgsc.ca/tuple encode/?color charts

Department of Control for Transportation and Vehicle Systems

- Fixed-point arithmetic
 - the radix point can be:
 - before the first data bit,
 - after the first data bit,
 - between those,
 - for real fractional numbers, range: $-1 \le N \le 1 2^{-n}$, precision: 2^{-n}
 - for integers (commonly used), range: $-2^n \le N \le 2^n 1$, precision: 1
 - for other fractional numbers, range: $-2^m \le N \le 2^m 2^{m-n}$, precision: 2^{m-n}
 - the signed bit is the first bit (usually):
 - it is 0, if the number is positive,
 - it is 1, if the number is negative

Faculty of Transportation Engineering and Vehicle Engineering Department of Control for Transportation and Vehicle Systems

- Negative numbers in fixed-point arithmetic?
 - real numbers not exist in the registers!
 - the integers are represented in 2's complement code!
 - with the aim of this method, the substraction may originate in summation

•
$$N_{2c} = \begin{cases} N, if N \ge 0 \\ 2^k - |N|, if N < 0, where k = number of the digits (sign + useful digits) \end{cases}$$

- e.g, if k=8:
 - 65 → 01000001
 - - 65 → 10111111 (256-65 = 191)

Budapest University of Technology and Economics

Faculty of Transportation Engineering and Vehicle Engineering

Department of Control for Transportation and Vehicle Systems

- Addition in 2's complement code:
 - requisite: $A_{2c} + B_{2c} = (A+B)_{2c}$,
 - instead of substraction, we have to realize addition in the case of the complement coded numbers!
 - Case 1:
 - A > 0 and B > 0 and A > B
 - in this case: $A_{2c} = A_b$ and $B_{2c} = B_b$
 - then: $A_{2c}+B_{2c} = A_b + B_b = (A+B)_{2c}$

Budapest University of Technology and Economics Faculty of Transportation Engineering and Vehicle Engineering

Department of Control for Transportation and Vehicle Systems

- Case 1, e.g:
 - A =17, B=9, k=8
 - in this case: $A_{2c} = A_b = 00010001$ and $B_{2c} = B_b = 00001001$, if k=8
 - then: $A_{2c}+B_{2c} = A_b + B_b = (A+B)_{2c} \equiv 26 = 00011010$

CY	sign	useful bits	remarks
0	0	0010001	A _b (17)
0	0	0001001	B _b (9)
0	0	0011010	sum (26)

• CY = carry

Budapest University of Technology and Economics Faculty of Transportation Engineering and Vehicle Engineering

Department of Control for Transportation and Vehicle Systems

- Case 1, problem, the sum is bigger, then the number range, e.g.
 - A =90, B=56, k=8
 - in this case: $A_{2c} = A_b = 01011010$ and $B_{2c} = B_b = 00111000$, if k=8
 - then: $A_{2c}+B_{2c} = A_b + B_b = (A+B)_{2c} = 10010010!!!$

CY	sign	useful digits	remark
0	0	1011010	A _b (90)
0	0	0111000	B _b (56)
0	1	0010010	sum (-18)

- the result is wrong, but CY=0! solution: e.g: OV overflow bit is 1, if the result is not in the range: -128...127
 - eg. in this case 10010010 = 146 in denary numeral system

Budapest University of Tech	noloav and	d Economics 🕳	
	Faculty of	^F Transportation	n Engineering

Engineering and Vehicle Engineering
 Department of Control for Transportation and Vehicle Systems

- Case 2:
 - A > 0 and B < 0 and |A| > |B|
 - in this case: $A_{2c} = A_b$ and $B_{2c} = 256$ B_b , if k=8
 - then: $A_{2c}+B_{2c} = A_b + 256 B_b = (A_b-B_b) + 256$
 - considering, that $(A_b B_b) > 0$, there is an unnecessary bit carry in the result

- Case 2, e.g:
 - A =17, B=-9, k=8
 - in this case: $A_{2c} = A_b = 00010001$ and $B_{2c} = 256 \cdot B_b = 11110111$, if k=8
 - then: $A_{2c}+B_{2c} = (A_b-B_b)_{2c}+256 = 8 = 100001000$ with an unnecessary bit

Budapest University of Technology and Economics

Faculty of Transportation Engineering and Vehicle Engineering
 Department of Control for Transportation and Vehicle Systems

CY	sign	useful digits	remarks
0	0	0010001	A _b (17)
0	1	1110111	B _{2c} (-9)
1	0	0001000	sum (8)

• the result is good, but CY=1, that is the unnecessary bit!

Budapest University of Technology and Economics

Faculty of Transportation Engineering and Vehicle Engineering Department of Control for Transportation and Vehicle Systems

- Case 3:
 - A < 0 and B > 0 and |A| > |B|
 - in this case: $A_{2c} = 256$ A_b and $B_{2c} = B_b$, if k=8
 - then: A_{2c}+B_{2c}=256-A_b + B_b=256- (A_b-B_b) considering, that (A_b B_b) > 0, the result will be a negative number in 2's complement code!

- Case 3, e.g:
 - A =-17, B=9, k=8
 - in this case: $A_{2c} = 256 A_b = 11101111$ and $B_{2c} = B_b = 00001001$, if k=8
 - then: $A_{2c}+B_{2c} = (A_b-B_b)_{2c}+256 = \pm -8 = 11111000$
 - the result is good, because the 2's complement code of -8 = 256-8 = 11111000

Budapest University of Technology and Economics Faculty of Transportation Engineering and Vehicle Engineering Department of Control for Transportation and Vehicle Systems

CY	sign	useful digits	remarks
0	1	1101111	A _b (-17)
0	0	0001001	B _{2c} (9)
0	1	1111000	sum (-8)

• the result is good, the signed bit =1!

Budapest University of Technology and Economics Faculty of Transportation Engineering and Vehicle Engineering

Department of Control for Transportation and Vehicle Systems

- Case 4:
 - A < 0 and B < 0 and |A| > |B|
 - in this case: $A_{2c} = 256$ A_b and $B_{2c} = 256$ - B_b , if k=8
 - then: $A_{2c}+B_{2c}=256-A_b+256-B_b=256-(A_b+B_b)+256$ considering, that $(A_b B_b) > 0$, the result will be a negative number in 2's complement code, and also will be in the result an unnecessary bit!

- Case 4, e.g:
 - A =-17, B=-9, k=8
 - in this case: $A_{2c} = 256 A_b = 11101111$ and $B_{2c} = 256 B_b = 11110111$, if k=8
 - then: $A_{2c}+B_{2c} = (A_b-B_b)_{2c}+256 = \pm -26 = \pm 11100110$ with an unnecessary bit
 - the result is good, because the 2's complement code of -26 = 256-8 = 11100110

Budapest University of Technology and Economics

Faculty of Transportation Engineering and Vehicle Engineering
 Department of Control for Transportation and Vehicle Systems

CY	sign	useful digits	remarks
0	1	1101111	A _{2c} (-17)
0	1	1110111	B _{2c} (-9)
1	1	1100110	sum(-26)

• the result is good, the signed bit =1!, but CY=1, that is the unnecessary bit!

Budapest University of Technology and Economics

Faculty of Transportation Engineering and Vehicle Engineering Department of Control for Transportation and Vehicle Systems

• Summary of addition (substraction) in 2's complement code:

Case	Α	В	Carry	Remark
1	>0	>0	-	Result is good, (sign= 0)
2	>0	<0	exist	CY, result is good
3	<0	>0	-	Result is good (in 2'c)
4	<0	<0	exist	CY, (result in 2'c)

Budapest University of Technology and Economics

Faculty of Transportation Engineering and Vehicle Engineering Department of Control for Transportation and Vehicle Systems

• Fractional numbers in 2's complement code:

•
$$N_{2c} = \begin{cases} N, & if \ 1 > N \ge 0\\ 2 - |N|, if \ -1 < N < 0 \end{cases}$$

- N=-0.75
- in binary form: -0.75₁₀=-0.11₂
- $2_{10} = 10_2$, then:

• the signed bit is the bit located at the local value 2⁰

Budapest University of Technology and Economics

Faculty of Transportation Engineering and Vehicle Engineering Department of Control for Transportation and Vehicle Systems

- Fractional numbers in 2's complement code:
 - with other words, it is a transformation, shown on the next picture, if the fractional number is: betwen -1...1

• not used in computer technology...

Budapest University of Technology and Economics Faculty of Transportation Engineering and Vehicle Engineering

Department of Control for Transportation and Vehicle Systems

- Floating-point arithmetic standard IEEE 754 -1985, nowdays: ISO/IEC/IEEE 60559:2011:
 - $A = \pm m * 2^{\pm k}$, every number can be written in this form,
 - two main types are (other types also exist):
 - single-precision floating-point number number representation in 32 digits, called also binary32
 - double-precision floating-point number number representation in 64 digits, called also binary64
 - signed bit:
 - 0, if the number is positive
 - 1, if the number is negative

	_
S characteristic mantissa	

Encoding, Number Representation in Computing

27/09/2018

Faculty of Transportation Engineering and Vehicle Engineering Department of Control for Transportation and Vehicle Systems

- characteristic single-precision:
 - $-2^{-7} + 2 \le k < 2^7 1$
 - $-126 \le k < 127$ offset zero-point representation:
 - -126=00000001

Faculty of Transportation Engineering and Vehicle Engineering Department of Control for Transportation and Vehicle Systems

- characteristic double-precision:
 - $-2^{10} + 2 \le k < 2^{10} 1$
 - $-1022 \le k < 1023$ offset zero-point representation:
 - -1022=0000000001
 - -1021=0000000010
 - -1020=0000000011
 - •
 - 0=01111111111
 - 1=1000000000
 - 2=1000000001
 - . . .
 - 1023=11111111110

27/09/2018

Budapest University of Technology and Economics

Faculty of Transportation Engineering and Vehicle Engineering Department of Control for Transportation and Vehicle Systems

- range of floating-point numbers:
 - single precision floating point numbers: $-(1 2^{-23}) * 2^{127} \le N \le (1 2^{-23}) * 2^{127}$
 - double precision floating point numbers: $-(1 2^{-52}) * 2^{1023} \le N \le (1 2^{-52}) * 2^{1023}$
 - $N_{max} \approx 2^{1023} \approx 9 * 10^{307}$
- precision of floating-point numbers:
 - single precision floating point numbers: $2^{-23} * 2^{127} = 2^{104}$
 - double precision floating point numbers: $2^{-52} * 2^{1023} = 2^{971}$
 - conversion from denary numeral system to floating-point arithmetic:
 - 1. convert to binary form,
 - 2. convert to normalized binary form,
 - 3. calculation of the characteristic,
 - 4. writing in the single/double precision floating point representation

Budapest University of Technology and Economics

Faculty of Transportation Engineering and Vehicle Engineering

- conversion from denary numeral system to single precision floating-point representation, e.g.
 - 1. convert to binary form,
 - by using the division and multiplication algorithmes:
 - 635,015625₁₀=1001111011,000001₂
 - 2. convert to normalized binary form,
 - =1001111011,000001=1001111011,000001* 2^{0}
 - =1001111011,000001* 2^{0} =1,001111011000001* 2^{9}
 - 3. calculation of the characteristic,
 - by using the offset zero point representation, c=127+k=127+9=136
 - $136_{10} = 10001000_2$ by using the division algorithm
 - 4. writing in the single precision representation
 - in binary fom:
 - in hexadecimal form: 441EC100

Budapest University of Technology and Economics

Faculty of Transportation Engineering and Vehicle Engineering Department of Control for Transportation and Vehicle Systems

- conversion from single precision floating-point representation to denary numeral system, e.g.
 - 1. writing in the single precision representation
 - in hexadecimal form: C4F9AB10
 - in binary fom:

- 2. calculation of the characteristic,
 - by using the offset zero point representation, $c=10001001_2=137_{10}$
 - k=c-127=137-127=10
- 3. convert from normalized binary form to binary form,
 - =-1,1111001101010101001* 2^{10} =-11111001101,010110001* 2^{0}
- 4. convert to decimal form,
 - -11111001101, 010110001 ₂=-1997,345703125₁₀

27/09/2018

End of Lecture 3.

Thank you for your attention!