REALIZATION OF BINARY OPERATIONS

Lecture 6.

ALU

- Binary operations are realized in the ALU, that can be structured in:
- serial form:
- the operations are performed bitwise, from the lowest local value toward to the higher local value,
- parallel form:
- all the operations are performed in one step in every local values,
- mixed form:
- generally used.
- Every type of artithmetic operations can be realized by addition:
- substraction,
- multiplication,
- division.

ALU

- ALU:

source: M.
Rafiquzzaman,
Fundamentals of
Digital Logic and
Microcomputer Design, 5th Edition

Adder

- Due to the importance of the addition, the time required to add numbers plays an important role in determining the speed of the ALU,
- Main types of the 1-bit adders:
- full-adder:

- half-adder:

Adder

- If we add three $(2+\mathrm{CY})$ bits:

CY ${ }_{\text {Cr }}$	${ }_{\text {cy }}^{\text {cy }}$	\bigcirc	$\bigcirc \bigcirc$	$\bigcap_{n}^{\text {Cr }}$ CY
0_{2}	0_{2}	0_{2}	12	1_{2}
$\underline{+0_{2}}$	$\underline{+12}$	$+0_{2}$	$+0_{2}$	$+1_{2}$
\bigcirc	I_{2}	${ }_{1}$	102	11_{2}

- full adder: adds binary numbers and accounts for values carried in as well as out,
- a one-bit full adder adds three one-bit numbers, where A_{i} and B_{i} are the operands and $\mathrm{C}_{\mathrm{i}-1}$ is a bit carried in form the previous less-significant stage,

- a full adder is usually a component of adders, which adds 8,16 , 32, 64, etc bits binary numbers.

Adder

- Thruth table of a one-bit full-adder:

A_{i}	B_{i}	$\mathrm{C}_{\mathrm{i}-1}$	$\mathrm{~S}_{\mathrm{i}}$	C_{i}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Adder

- Karnaugh maps:

Adder

- Logical functions:

- $S_{i}=A_{i} \oplus B_{i} \oplus C_{i-1}$ (XOR)

Adder

- Realization:
- $S_{i}=A_{i} \oplus B_{i} \oplus C_{i-1}(\mathrm{XOR})$

Adder

- If we add two bits:

CY
\cap
0_{2}
$+0_{2}$
0_{2}

CY^{n}
0_{2}
$+1_{2}$
1_{2}

cY
1_{2}
$+1_{2}$
10_{2}

- full adder: adds two single binary digits,
- a one-bit half-full adder adds two one-bit numbers, where A_{i} and B_{i} are the operands,
- it has two outputs, where the carry represents an overflow in to the next digit.

Adder

- Thruth table of a one-bit half-adder:

A_{i}	B_{i}	S_{i}	C_{i}
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Adder

- Logical functions and realization:
- $S_{i}=A_{i} \oplus B_{i}(\mathrm{XOR})$
- $C_{i}=A_{i} B_{i}$

Adder

- Complex Adders:
- to add more digits,
- Serial Adder:
- the result will be in the operand A,
- it is slow.

Adder

- Complex Adders:

- to add more digits,
- Riple-Carry Adder (paralell adder):
- to add N-bits,
- in this case, the adder is simple, that allows fast design time,
- the ripple-carry adder is relative slow, because each full-adder must wait for the carry bit, calculated from the previous adder, this is called the gate-daley (Δt),
- if the gate delay of a full-adder is $3^{*} \Delta \mathrm{t}$, the result will be correct in time: $\mathrm{n}^{*} \Delta \mathrm{t}$, e.g the total gate delay in a case of addition of two 32 bits number: $31^{*} 3^{*} \Delta \mathrm{t}$ (full adders) $+1^{*} \Delta \mathrm{t}$ (half-adder), the total delay $=94^{*} \Delta t$
- if this time is not acceptable, it must to accelerate the addition

Adder

- Riple-Carry Adder (paralell adder):

Adder

- Riple-Carry Adder (paralell adder):
- it is possible to build smaller units - 4-bit Riple-Carry Adder (or carry-prpagated adder, CPA) -, because the carry is propagated serially through each full adder.

source: M. Rafiquzzaman, Fundamentals of Digital Logic and Microcomputer Design, 5th Edition

Adder

- Riple-Carry Adder (paralell adder):
- 16-bits CPA:

Adder

- Carry-lookahead adder:
- Idea: it is needed to determine the carry before the addition
- carry-look ahead logic uses the concept of generating and propagating carries,
- in the case of binary addition, $\mathrm{A}+\mathrm{B}$ generates carry, if, and only if both A and B are 1 .
- $G(A, B)=A * B$
- the addition of two 1 -digit inputs A and B is said to be propagate, if the addition will carry whenever there is an input carry,
- in the case of binary addition, $\mathrm{A}+\mathrm{B}$ propagates a carry, if and only if at least one of A or B is 1
- $\mathrm{P}(\mathrm{A}, \mathrm{B})=\mathrm{A}+\mathrm{B}$

Adder

- Recursive Transfer Training method:
- $C_{i}=G_{i}+\left(P_{i} * C_{i-1}\right)$
- $C_{0}=G_{0}=A_{0} B_{0}$
- $C_{1}=G_{1}+P_{1} C_{0}=A_{1} B_{1}+\left(A_{1}+B_{1}\right) A_{0} B_{0}$
- $C_{2}=G_{2}+P_{2} C_{1}=A_{2} B_{2}+\left(A_{2}+B_{2}\right)\left[A_{1} B_{1}+\left(A_{1}+B_{1}\right) A_{0} B_{0}\right]=$
- $=A_{2} B_{2}+\left(A_{2}+B_{2}\right)\left(A_{1} B_{1}+A_{0} A_{1} B_{0}+A_{0} B_{0} B_{1}\right)=$
- $=A_{2} B_{2}+A_{1} A_{2} B_{1}+A_{0} A_{1} A_{2} B_{0}+A_{0} A_{2} B_{0} B_{1}+A_{1} B_{1} B_{2}+A_{0} A_{1} B_{0} B_{2}+A_{0} B_{0} B_{1} B_{2}$
- It means a complicated 2-levels combinational logical network, and contains the gate delays
- e.g. a standard 16 bit adder would take 46 gate delays, with this method it is just $5(2+3)$ gate delays

Adder

- Carry-lookahead adder:

Adder

- Carry-lookahead adder:
- 4-bits CLA, e.g.
- BA: Basic-Adder

source: M.
Rafiquzzaman, Fundamentals of Digital Logic and Microcomputer Design, 5th Edition

Adder

- BCD Adder:

- Truth Table (see earlier):
- we have to create an addition if the result is beetween $9<$ Res <16,
- if the result is bigger then 15 , it is needed to create the decimal adjust
- $\mathrm{C}=\mathrm{Z}_{4}{ }^{*} \mathrm{Z}_{8}+\mathrm{Z}_{2} * \mathrm{Z}_{8}+\mathrm{C}_{\mathrm{h}}$

$A_{i}+B_{i}$	wrong Res $Z_{8} Z_{4} Z_{2} Z_{1}$	good Res $\mathrm{S}_{8} \mathrm{~S}_{4} \mathrm{~S}_{2} \mathrm{~S}_{1}$	DA	correction
0	0000	0000	No DA	Not necessary
1	0001	0001		
2	0010	0010		
3	0011	0011		
4	0100	0100		
5	0101	0101		
6	0110	0110		
7	0111	0111		
8	1000	1000		
9	1001	1001		
10	1010	0000	No DA, it has to generate it	$\begin{gathered} +6 \\ (+0110) \end{gathered}$
11	1011	0001		
12	1100	0010		
13	1101	0011		
14	1110	0100		
15	1111	0101		
16	(1)0000	0110	it generates	
17	(1)0001	0111		
18	(1)0010	1000		

Adder

- BCD adder for two tetrades:

Shifting

- Multiplication by 2:
- or with 2^{x}

- Division by 2 :
- or with 2^{x}

Multiplication

- Multiplication by leftforward shihting, 4x4 Array Multiplier:

ALU

- https://www.youtube.com/watch?v=K79wfflmLNo
- https://www.youtube.com/watch?v=1I5ZMmrOfnA
- https://www.youtube.com/watch?v=fpnE6UAfbtU
- https://www.youtube.com/watch?v=FZGugFqdr60

\longrightarrow Panmen
 Budapest University of Technology and Economics Faculty of Transportation Engineering and Vehicle Engineering Department of Control for Transportation and Vehicle Systems
 End of Lecture 6.

Thank you for your attention!

